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Abstract

Large Language Models (LLMs) have experienced a surge in popularity in recent
times, owing to their remarkable ability to follow instructions and demonstrate
success across a wide range of Natural Language Processing (NLP) tasks. However,
LLMs suffer from a wide range of issues such as harmful generation, fairness,
privacy, and robustness. Addressing these issues provides immense value to society
and also ensures responsible use of technology.
In this work, we emphasize the existence of fairness-related concerns in large lan-
guage models (LLMs). Given the significant compute requirements and the discrete
nature of LLMs, we are the first to propose a stable adversarial procedure in the
context of LLMs. These procedures can be extended to pre-processing techniques,
which operate under the assumption of black-box models. We demonstrate that
bias in generation is influenced by bias in prompts, providing a basis for the hy-
pothesis that prompt tuning can steer outputs in a fair direction. To achieve this, we
introduce a contrastive learning objective and train the network adversarially using
Gumbel softmax. We ensure the stability of this training process by implementing
Stochastic Weight Averaging (SWA) and address the compute requirements using
LoRA adapter. Our findings suggest that the contrastive learning method notably
enhances fairness.

1 Introduction

LLMs are deployed in wide array of use cases such as hiring Gan et al. (2024) and healthcare Li
et al. (2024), which impact the lives of humans, it puts responsibility on the companies leveraging the
technology to comply with regulations. This includes the evaluation and mitigation of bias in hiring
decisions based on race and gender. Companies also have an additional responsibility to disseminate
harmless, unbiased, and truthful information. Vesnic-Alujevic et al. (2020) calls for AI policy to
make companies accountable for privacy, hate speech, and bias.

Work by Wang et al. (2023), show that LLMs suffer wide range of problems such as harmful
generation, fairness, privacy, and robustness. the methods mitigating these issues are typically
formulated as adversarial tasks, where the goal of the adversary to trigger wrong behaviour and LLMs
should be robust to such attacks. In the previous survey paper we Gaudi (2024) have outlined various
challenges of adversarial training LLMs, such as discreet text domain and huge compute resources,
while also summarizing contributions from researchers aimed at addressing these challenges in the
context of harmful content generation. However, these techniques, when directly applied to fairness,
they often fail to replicate the success demonstrated for mitigating harm. InstructGPT (Ouyang et al.
(2022)) have shown improvements in toxicity over GPT-3 but fails to mitigate bias.

In this work we focus on mitigating bias in LLMs. In Section 1.1 we introduce different notions
of fairness. In Section 2, Drawing inspiration from Wang et al. (2023), we evaluate the fairness on
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surrogate task, where the goal is to predict the income based on the different parameters, including
gender constructed as text. The advantage of this setting is we can model few shots samples as prompt
and control the bias and study the effect of bias on generation. We find that prompt is very critical in
controlling the bias. Based on this result we tune the LLM to be fair to the most unfair prompt. This
is a adversarial training procedures. The goal of the adversary is to generate most unfair prompt and
the goal of LLM is to be fair to adversary, which are extensively studied extensively in Section 3.

1.1 Fairness

Figure 1: Causal relation be-
tween s, X, and Y.
Left figure case 1: s acts as a
confounder, affects Ŷ through
X and directly
Right figure case 2: X ⊥⊥ s,
X and s affect Ŷ indepen-
dently.

The survey Cruz and Hardt (2023) outlines various approaches used
to enhance fairness. Fairness in machine learning has branched
into three main categories: pre-processing, in-processing, and post-
processing. In-processing methods assume access to the complete
model, while post-processing methods assume only access to the
features, which is not feasible in a black-box setting. However,
each method can be extended to the others. For example, if the
encoder is frozen and only the classifier is trained, then in-processing
techniques can be modified to post-processing. Similarly, if gradients
are propagated to the input, the method can be translated into pre-
processing.

Current fairness literature offers multiple definitions of fairness. One such definition is Demographic
Parity Difference (DPD), defined as:

Mdpd =
∣∣∣Pr(Ŷ = 1|s = 0)− Pr(Ŷ = 1|s = 1)

∣∣∣ (1)

DPD measures the change in model behavior by altering the sensitive attribute while keeping
everything else constant. However, this definition fails in Case 1 of figure 1, where controlling for s
opens a backdoor path to X . To address this shortcoming, Hardt et al. (2016) proposed Difference
in Equalized Odds(DEO), which measures the absolute difference in false positive or false negative
rates for all groups. In this paper, we calculate the sum of both and refer to it as DEO:

Mdeo =
∑
y∈0,1

|Pr(Ŷ = 1|s = 0, Y = y)− Pr(Ŷ = 1|s = 1, Y = y)| (2)

2 Problem Formulation

We investigate fairness in GPT models, we adopt the framework proposed by Wang et al. (2023).
Our task involves leveraging generative models for classification on the Adult dataset. We construct
natural language queries from the dataset features and utilize next token prediction to classify whether
a person will earn more than $50,000.

GPT models struggle with zero-shot learning in generating meaningful next tokens for the task at
hand. To address this limitation, we employ few-shot learning by providing the model with curated
samples, guiding it to output binary classifications (1 or 0).

To investigate bias in LLMs we conduct experiments focusing on the Adult Dataset, addressing
simplifications for clarity. Recognizing an inherent imbalance in the dataset (×5.23), we first balance
the occurrences of y=1 and y=0. Given the use of a few-shot data points for guiding predictions,
the bias introduced by these few-shot samples significantly influences the query bias. We measure
bias using bias parity, denoted as bPc , calculated as P (y = 1|s = 0) − P (y = 1|s = 1). Here, s
represents the sensitive attribute (gender in our example), and y indicates income status, where 1
denotes income greater than 50K, and 0 denotes income less than 50K. Control over bPc

is achieved
by sampling 200 data points according to the specified distribution.

A natural bias of bPc = 0.1312 is present in the dataset. When we randomly sample from the dataset,
the few-shot samples inherit the same bias. To adjust the sampling, we can independently sample
from P (y = 1|s = 0) and P (y = 1|s = 1). Alternatively, we can employ the counterbalance
technique to make the prompt fair by creating a sample where gender is switched from male to female
while keeping other attributes constant. This modification results in a bias parity of 0 for the prompt.
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bPc
ACC ↑ Mdpd ↓ Meod ↓

0.00 75.5 0.0049 0.0083
0.13 85.0 0.0080 0.0180
0.50 70.5 0.0411 0.0429
1.00 68.5 0.0940 0.1019

Table 1: Few shot (16) performance of
GPT models under different bias of the
prompts

bPc
ACC ↑ Mdpd ↓ Meod ↓ Counterbalance

0.00 81.5 0.0028 0.0082 ✓
0.00 75.5 0.0049 0.0083 ×

Table 2: Counterbalance by adding conuterfactuals

From Table 1 and Table 2, it is evident that the selection of few-shot samples significantly influences
the generation outcome. By managing the bias in the prompt, we can regulate the fairness of the
model. However, we also observe a decrease in accuracy when deviating from the inherent bias
present in the dataset. Thus, there exists a trade-off between fairness and accuracy.

Having demonstrated that bias in the prompt influences to the generated output, Instead of manually
controlling the prompt we will influence the training with by characterising fairness with prompt.

3 Method

Figure 2: Contrasting training procedure where the LLM and the token probabilities are trained
alternately. The objective is to identify biased prompts, with the LLM subsequently fine-tuned to be
robust against such prompts.

3.1 Bi-level adversarial optimisation

The above idea can be formulated as a the objective below

minθminϕ L(fθ(gϕ, xi)) + λ||fθ(gϕ, xmi)− fθ(gϕ, xfi)||2
subject to gϕ = argmax ||fθ(gϕ, xmi)− fθ(gϕ, xfi)||2

(3)

L is Task Loss, here predicting if the income is grater than $50K and gϕ is the maximum unfair
prompt, which is a adversarial network. and fθ is the LLM from which we want to remove bias.

The Equation 3 is the formulation of bi-level optimisation problem. where the goal of LLM is to
finetune on the task and the goal of the adversary is to find the prompt that makes the output that
prompts the LLM to leverage gender information.

We can solve this optimisation by ADMM Boyd et al. (2011), alternating between optimisation of θ
and then ϕ till the convergence.

3.2 Gumbel Soft-max Reparametrisation
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Figure 3: Re-parametrisation
trick

The gumbel softmax trick is given by sampling in the forward pass
f(v) = argmaxV [v1 v2 v3] and the backward pass propagates
gradients as if function, f is replaced with simple softmax function
∂f(v)
∂v = σ(1 − σ),where σ = Softmax([v1 v2 v3]). It can be

derived as a reparametrisation trick Jang et al. (2016). This trick
enables gradients to propagate back to inputs, allowing adversarial
techniques designed for continuous domains to be adapted for text.

3.3 Extension to prompt tuning

minϕ||fθ(gϕ, xmi)− fθ(gϕ, xfi)||2 (4)

If we have no access to the model weights. We can only tune the prompt according to Equation
4, which is equivalent to keeping the LLM weights frozen and solving one part of the bi-level
optimisation in Equation 3.

4 Experimental Setup

We will restrict ourselves to the simplest setting of improving the fairness of LLM, here we consider
1.3B GPT-neo and also the restrict adversary to the categorical distribution. This simplest setting is
to prove the gradient propagation. We can however replace the categorical distribution to another
LLM. In this work, we perform experiments to show the improvements in fairness on the toy setup
mentioned in the Section 2. The code is available at 1

4.1 LoRA Adapter

Computing gradients for 1.3B parameters, and having the network computational graph on memory is
memory intensive. However, we leverage LoRA adapter Hu et al. (2021) to train only the query and
value projection matrices of the transformer block. thereby reducing the total trainable parameters to
0.5% .

4.2 Stochastic Weight Averaging

Gumbel softmax is a stochastic process, therefore training is highly unstable. Some form of weight
averaging Karras et al. (2023) is suggested to improve the stability of training. Here we use SWA
Izmailov et al. (2018) to average the model weights, which will improve generalisation and also we
see the stability at the end of the training and also reduces influence on learning rate.

(a) Without SWA (b) SWA

Figure 4: Training a known distribution with gumbel softmax

1https://github.com/sachit3022/FairCon
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5 Results

Training ACC ↑ Mdpd ↓ Meod ↓
Fine tuned LLM 63.0 0.183 0.142
Fine tuned LLM with fairness constraints 51.0 0.136 0.081

Table 3: Training LLM with an implicit bias of bPc
= 0.5 with and without fairness constraints.

In Table 3, we show that training with fairness constraints will results in improvement in fairness. We
examine the sample generated by the adversarial network as a prompt. Here is an example: "aerial
134 Att claims Generic execute Whatever rink reservoirs Dragon." Since we have not imposed any
constraints on the prompt, it lacks meaningful language structure. However, by LLM, instead of
categorical distribution, we can observe prompts that resemble human language through sampling.

6 Conclusion

There are no papers for training LLMs with adversarial objectives. This paper by Ganguli et al. (2022)
predicts that end-to-end adversarial min-max training with RL will lead to superior results, although
the stability of RL remains a concern and may result in model collapse but there is currently a lack of
empirical evidence demonstrating its success. We are the first one to study adversarial optimisation
in the context of LLM.

We introduce the stability to the training process by introducing SWA.

We reinforce that bias in the prompt can be translated to the bias in generation, we therefore make the
LLM fair to the unfair prompt, thereby making the LLM robus to prompt based attacks.

7 Related Works

In recent times, there has been significant interest in the field of fairness, as outlined in the survey by
Caton and Haas (2020), which discusses various risks associated with unfair models and highlights
the direction of fairness research. Additionally, the work of Dehdashtian et al. (2024) has extended
fairness techniques to a multi-modal setting. However, fairness remains a relatively understudied
area in generative models. Current techniques to address fairness in large language models (LLMs)
primarily rely on prompt tuning and pre-processing methods. Some approaches involve manually
crafting prompts, as mentioned in Si et al. (2023), while others leverage training an LLM to auto-
matically adjust prompts using techniques such as Gumbel softmax Xu et al. (2023) or methods
proposed by Wu et al. (2024), which build upon the success of instruction tuning Ouyang et al. (2022)
to find prompts that yield fair outputs for a center class of instructions. However, due to the unstable
optimization procedures of techniques like Gumbel softmax or Proximal Policy Optimization (PPO),
they are not easily extended to adversarial training.

8 Future works

In this we show that gradient based techniques are still applicable and the techniques that are designed
for the Continuous domain can be adapted to the LLMs. However, we need to investigate the stability
of the training procedure and demonstrate the success on a large dataset.

As the current direction of LLM is black-box accuess, We need to investigate the transfer learning
capabilities of such models when applied to commercial LLMs like ChatGPT.
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