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1 Introduction

The research project aims to enhance law enforcement intelligence to better
equip police for crime prevention. The primary emphasis lies in predict-
ing crimes, a crucial component of law enforcement intelligence. However,
current techniques are very limited to the frequentist approaches, including
identifying crime hot spots [3]. The major challenge to predictive modeling
is the diverse and multi-modal nature of the data, encompassing categorical,
continuous, temporal, and geospatial features. This study aims to address
this challenge by comprehensively evaluating classical machine learning algo-
rithms across this broad range of data types. The ultimate goal is to establish
a robust benchmark that can be used to critically assess the effectiveness of
various machine learning algorithms for crime prediction.

Crime is a pervasive issue in our society that has an impact on everyone,
whether as a victim or perpetrator. In our project, we examined the ”Chicago
Crime Dataset” which contains information on criminal incidents in Chicago
dating back to 2001. Our analysis focused on identifying patterns and trends
in crime over time, as well as pinpointing the police districts where crime
occurs most frequently to identify the hotspots of some specific criminal
activity.

The main objective of this project is to build a predictive model that can
predict the type of crime based on preliminary information received from
the reporter such as location, time, and description of location. The code is
available here 1. Through this project, we aim to learn about the following:

1https://github.com/iamdanialkamali/Crime-Prediction/
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1. How do we incorporate features of different modalities into classical
machine learning models?

2. Examination of the Significance of Features in Predicting Crime Types
within the Context of Chicago

3. What are engineering modifications we need to make to handle large
scale data?

4. Strategic approaches for addressing temporal distribution shifts within
the dataset.

5. Evaluation of methodologies aimed at mitigating class imbalance con-
cerns, with a focus on achieving equitable error rates across diverse
classes.

6. Which classification algorithm performs best for this prediction task?

7. How accurately can we predict the type of crime from preliminary in-
formation in Chicago?

8. Can we identify any patterns or trends in the data that can help us
prevent and respond to crimes more effectively?

By answering these questions, we can gain insights into the nature of crime
in Chicago and help law enforcement officials make data-driven decisions to
prevent and respond to crimes.

2 Problem Statement

The Chicago crime dataset contains information on various reported crimes in
the city of Chicago from 2001 to the present lastly updated on October 26th,
2023. This project aims to predict the type of crime based on location and
time. By accurately predicting the type of crime, law enforcement officials
can take appropriate measures to prevent and respond to crimes in a timely
and effective manner.

The inherent characteristics of crime data remain largely unexplored. Our
initial research strategy is a thorough examination of the data, as outlined
in Section 4.1. In this section, we emphasize the significance of conducting
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data exploration, a fundamental step in gaining insights into the data distri-
bution and identifying potential discrepancies in relation to the underlying
assumptions. Subsequently, we comprehensively analyze these assumptions
in Section 4.2. These nature of assumptions will lead us to find new tech-
niques to leverage challenges in data such as Distribution shift and class
imbalance. The detailed approach has been listed in 4.4 and 4.6

Furthermore, our investigation extends to studying diverse machine learn-
ing algorithms, each applied within specific contextual conditions, as elabo-
rated in Section 4.7.

The success of deep learning can be attributed to learning a map of
multi-modal data into tailored functional spaces, which enhances its repre-
sentational capabilities. Conversely, feature space is assumed to be infinite-
dimensional Hilbert space and is approximated by the kernels in classical
machine learning. Our research delves into methodologies for data represen-
tation and feature engineering, as detailed in Section 4.3. While augmenting
features can indeed bolster a model’s representational power, it comes with
a caveat known as the ”curse of dimensionality,” which can hinder a model’s
ability to generalize effectively. In Section 4.8, we explore several strategies,
including feature selection and regularization, and discuss their potential to
enhance model robustness, noting the connection between regularization and
selection.

In Section 5, we establish the experimental framework, a critical compo-
nent for evaluating model performance. In testing our algorithms, we employ
a robust test set that involves a temporal separation between training and
testing data. This setup assesses the model’s proficiency in predicting fu-
ture occurrences of crimes. However, it is essential to acknowledge that this
stringent testing criteria necessitates an assumption that there is no shift
in distribution. Addressing distribution shifts and their integration into the
algorithm can be challenging, and while we acknowledge this issue, we aim
to limit our commentary on distribution shifts given the extensive nature of
this topic.

To accomplish this objective, we have subdivided the task into the follow-
ing subtasks, where we aim to explore classical machine learning algorithms
and propose enhancements to develop a robust predictive model. It’s impor-
tant to note that this approach is not constrained solely to crime data but
can be applied to a wide range of datasets.
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3 Dataset

The Chicago crime dataset [2] contains information on various reported
crimes in the city of Chicago from 2001 to the present last updated on Oc-
tober 2023. The Chicago Crimes - 2001 to present dataset provided by the
City of Chicago Police Department is available on the City of Chicago’s data
portal2 and will be used for this project. This dataset contains about 7.76M
lines of information on reported crimes in the city, including the type of
crime, location of the crime, date and time of the crime, etc [Table 4]. As
of October 2023, this dataset has over 7.5 million records and 22 columns.
There are, on average, 400,000 reported crimes [Figure 1] for a population of
2.697 million, which is a big and steady problem to solve.

(a) How crime progressed throughout
the years

(b) Nature of crime

Figure 1: Description of Crime Dataset

4 Approach

4.1 Looking into data

The analysis of crime patterns and trends in urban areas has important
implications for law enforcement, public policy, and social welfare. In the
case of Chicago, crime is a persistent problem that affects the safety and
well-being of its citizens, as well as the reputation and economic vitality of
the city. Therefore, the study of crime in Chicago is of great interest to
researchers, policymakers, and the public.

2https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
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One of the primary objectives of our analysis was to examine the trends
in crime rates over time. By analyzing the Chicago Crime dataset, we found
that the overall crime rate has decreased over the years, as shown in Fig-
ure 1. This trend is an encouraging sign that crime prevention efforts and
law enforcement strategies have been effective in reducing crime in the city.
However, the sudden drop in crime during the COVID-19 pandemic and its
subsequent resurgence after the end of quarantines is a point of concern that
merits further investigation.

Moreover, we also identified the hot zones of crime in Chicago by analyz-
ing the distribution of crime across the 24 police districts, as shown in Figure
4. This information can help law enforcement agencies to allocate resources
and personnel to areas that are more prone to crime and to develop targeted
crime prevention strategies. For instance, the police department can priori-
tize specific crimes or subjects to focus on in each district or assign officers
to districts based on their specialty or expertise.

In addition to identifying the high-crime areas of the city, we also analyzed
the nature of crimes in each district, as shown in Figure 5. The distribution of
crimes in each district varies significantly, which can provide valuable insights
to law enforcement agencies in developing strategies to combat crime. For
example, they can identify the types of crimes that are most prevalent in a
particular area and prioritize their efforts accordingly. Moreover, they can
provide additional training to police precincts in high-crime areas to improve
their ability to respond to and prevent crime.

Another important aspect of our analysis was to examine the patterns
of crime across different months of the year. We hypothesized that envi-
ronmental factors such as weather might influence the nature and frequency
of crimes. However, our observations did not support this hypothesis, as
shown in Figure 6. The distribution of crimes remained relatively consistent
throughout the year, indicating that other factors such as socioeconomic
conditions or social norms may play a more significant role in shaping crime
patterns.

Finally, we analyzed the distribution of crimes across different times of the
day, dividing the 24-hour day into four phases. As expected, the overall crime
rate is lower at night, when most people are sleeping. However, we found
that the distribution of crimes varies significantly across different parts of the
day, as shown in Figure 7. For instance, battery crimes are more prevalent
late at night, while robberies are more likely to occur in the early evening.
This information can help law enforcement agencies to allocate resources and
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personnel to areas and times of day that are more prone to crime, and to
develop targeted crime prevention strategies.

4.1.1 Data Pre-Processing

From the information available in the Chicago Crime dataset, lots of them
are unrelated to our goal such as the arrest information and IUCR. In ad-
dition, we have duplicate information such as zip code and their Latitude
or beat information. Hence we removed this information from our dataset
{’ID’,’ Case Number’, ’IUCR’, ’Arrest’, ’Longitude’, ’Domestic’, ’Beat’, ’FBI
Code’ , ’Updated On’, ’Latitude’, ’Historical Wards 2003-2015’, ’Zip Codes’,
’Location’}. These columns were either unrelated or had other columns rep-
resenting them. Since it is a real-world dataset it has missing entries (NA).
We removed these rows which were less than 1% of our dataset. Furthermore,
most of our data were string data types. We numerically classified them by
an integer index as their new representation.

4.1.2 Feature Engineering

We create new quantified features that can provide additional information
about the crime occurrence. We extracted the information about the day of
the week, month, and time of day from the Date column. This could help
us extract more meaningful information from the dataset and improve the
accuracy of the model.

4.1.3 Feature Selection

In our system, we assumed that we can extract the exact location of the
crime and extract all other information about the location such as neigh-
borhood, community and etc. Thereby, we start with these 19 features.{’Y
Coordinate’, ’Weekday’, ’Description’, ’Police Beats’, ’Zip Codes’, ’Census
Tracts’, ’Location Description’, ’Month’, ’Primary Type’, ’X Coordinate’,
’Wards’, ’Time of Day’, ’Community Area’, ’Police Districts’, ’Ward’, ’Dis-
trict’, ’Year’, ’Block’, ’Community Areas’}. We used techniques such as Se-
quential Feature Selection and correlation analysis to select the most relevant
features for the prediction task. This will help us reduce the dimensionality
of the data and improve the performance of the model. these methods dis-
carded features like the ’Month’ feature from our feature set. Figure 6 shows
the histogram distribution of the crime types in different months of the year.
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As we can see in Figure 6, the distribution of crimes stays similar around
every month of the year. Here are the features selected after the feature
selection. {’Year’, ’Description’, ’Y Coordinate’, ’Block’, ’Ward’, ’Location
Description’, ’Census Tracts’, ’X Coordinate’}

We also experiment with using regularizer to select features, and SVD is
also one of the important technique to redce the diamentionality and perform
feature selection in a different subspace and project back to the original
subspace.

Method Train Acc (%) Test Acc (%) Generalization Gap (%) ↓
None 99.98 93.15 6.83
SFS 99.55 92.30 7.25
Hinge Selection 99.98 93.15 6.83
SVD (0.9 variance) 99.98 87.87 12.11

Table 1: Performance Metrics for Different Methods for feature selection
applied for Random forests Classifier

The table reveals that none of the feature selection approaches proved
effective, likely due to the dataset’s substantial size relative to the number
of features. Additionally, the application of SVD further deteriorated perfor-
mance, likely attributed to the low variance in the timing of certain crimes,
with a majority occurring during the night.

This low variance in the timing of crimes poses a challenge, particularly
in cases where the removal of the time variable results in a loss of predictive
power. For instance, omitting the time of the crime could compromise the
model’s ability to distinguish between day crimes, such as bank robberies
and other minor offenses, versus serious crimes.

4.2 Assumptions

Geospatial data, characterized by latitude and longitude coordinates, devi-
ates from the assumptions of Euclidean space. Effective handling of such data
may necessitate either a transformation of the coordinates or the utilization
of algorithms specifically tailored for spherical geometry. In our approach,
we propose the conversion of geospatial data into Euclidean coordinates.

The logistic regression model commonly assumes a uniform error distri-
bution. However, this assumption is not consistently met in our dataset,
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primarily due to the presence of categorical variables. Furthermore, the lack
of ordering in these categorical variables poses a unique challenge. If the cat-
egories were organized as 1, 2, 3 · · ·, we could not infer a Euclidean meaning
from the categories. Traditional one-hot encoding is not a viable solution
due to the large number of unique values in the categorical feature, resulting
in a data explosion of up to 1 TB. Additionally, the challenges of overfitting
associated with a large number of features further complicate matters.

To address these issues, we propose the use of feature embeddings, as ex-
pounded in Section 4.3. These embeddings will project categorical variables
into a high-dimensional space, thereby maximizing predictive power and im-
proving our ability to discern the nature of criminal activities. Notably, our
adoption of embeddings has yielded a substantial 32% increase in model ac-
curacy compared to using traditional categorical variables, as embeddings
obviate the need to consider the order among categories.

4.3 Multi-modal Data

The transformation of text, location, and categorical variables into Euclidean
space is imperative for our analysis. To address this complex task, we propose
the utilization of embeddings. Specifically, for text features, which often
exhibit substantial dimensionality, we will employ BERT embeddings. To
manage the high dimensionality of these text features, we plan to perform
dimensionality reduction to achieve the desired representational power.

For categorical variables, we aim to train embeddings that maximize their
representation of the predicting variable (nature of crime). This will be
accomplished by training a linear Multi-Layer Perceptron (MLP) on top of
the embeddings, utilizing cross-entropy loss with respect to the predicting
variable. This approach ensures that the embeddings capture the intricate
relationships between categorical variables and the target variable, enhancing
their predictive capabilities.

These classifiers trained with embeddings instead of categorical variables
yield a substantial increase in accuracy, amounting to an impressive 32%.
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4.4 Imbalance: Over, Under, and Generative sampling

(a) Distribution Crime Types (b) Normalised Nature of crime

Figure 2: Distribution Crime Types After Label Normalization

Figure 2 illustrates the highly imbalanced class distribution of the Chicago
Crime dataset labels. In order to address this issue, we performed some
data preprocessing steps, including the removal of non-criminal labels and
the merging of similar labels, as shown in Table 2. The new disribution is
shown in Figure 2

New Label Old Labels

NARCOTICS
OTHER NARCOTIC VIOLATION

NARCOTICS

SEX OFFENSE
PROSTITUTION

CRIM SEXUAL ASSAULT
SEX OFFENSE

GAMBLING
RITUALISM

LIQUOR LAW VIOLATION
GAMBLING

ROBBERY or TRESPASS
CRIMINAL TRESPASS

ROBBERY

PUBLIC PEACE VIOLATION
INTERFERENCE WITH PUBLIC OFFICER

PUBLIC PEACE VIOLATION

Table 2: Label Conversion [6]
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Following the modification of class labels, a substantial class imbalance
persists, as evident from the low macro F1 score and a high accuracy. Ad-
dressing this challenge and aligning the F1 score more closely with accuracy
necessitates the exploration of various sampling techniques.

Among these techniques, oversampling is a popular choice. However, in
scenarios where the dataset is already extensive, employing oversampling
alone could result in a 40-fold increase in data volume. This amplification
not only leads to slower training times but can also be impractical for certain
algorithms, such as Kernel SVM, which may encounter prolonged execution
times. Moreover, oversampling in isolation may foster overfitting for the
minority class. To mitigate these issues, it is recommended to combine over-
sampling with other techniques, such as cross-validation. Cross-validation
involves dividing the dataset into training and testing sets, enabling model
evaluation on the testing set to prevent overfitting and ensure robust gener-
alization to new and unseen data. Selective oversampling, as illustrated in
our example, contributes to notable improvements in the F1 score.

Another technique, undersampling, is employed to manage overfitting
and reduce data size. However, this approach becomes problematic when
dealing with classes that have very few samples, as is the case with serious
crimes occurring infrequently. The resulting dataset becomes highly sparse,
diminishing generalizability and rendering it unusable.

To overcome both the challenges of data multiplicity and maintaining
representational capacity, we explore generative sampling. This technique
assumes that the features of each class follow a specific distribution (e.g.,
Gaussian in our example) and that each feature is independent of others given
the class. While these assumptions can be stringent, our example highlights
that generative sampling did not yield superior results, primarily due to the
invalidation of the independence assumption among features. Fine-tuning
these assumptions is crucial for achieving optimal results in such scenarios.

4.5 Large Scale Dataset

The dataset, consisting of 7.7 million data points amounting to 2 GB, poses
a formidable challenge for the application of classical machine learning al-
gorithms such as SVM and random forest. To overcome this engineering
obstacle, we propose two viable solutions.

Firstly, we suggest leveraging approximate methods for computing dis-
tance/similarity, utilizing the faiss library developed by Meta, specifically
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designed to handle large-scale data.
The second strategy involves temporal data chunking—feeding smaller

subsets to the classifier and ensemble these classifiers using boosting tech-
niques. This approach offers dual benefits: it proportionally reduces training
time, facilitating parallelization and significantly decreasing the overall train-
ing duration. Additionally, it introduces an automatic re-weighting mecha-
nism, where the ensemble classifier comprises all individual classifiers trained
on a single data chunk. The weight of each classifier is inversely proportional
to its logarithmic error rates, akin to boosting. This automatic re-weighting
mechanism proves advantageous for addressing distribution shift, particularly
when the validation set is temporally aligned with the test set. The valida-
tion set aids in re-weighting samples to better align with the distribution of
the test set, thereby enhancing overall accuracy.

Notably, the chunking technique has resulted in a substantial 6% im-
provement in test accuracy, effectively bridging the gap between test and
train accuracy and serving as an effective regularizer.

4.6 Distribution Shift

Figure 3: Shift in distribution

As evident from Figure 1, both the crime rate and the nature of criminal
activities exhibit dynamic changes from year to year. Constructing a robust
model based solely on historical data poses challenges in adapting to future
distributions. To address this issue, we recognize the necessity of accounting
for distribution shifts in our approach.

One strategy involves assigning differential weights to data points based
on their temporal proximity to the future. Alternatively, we propose employ-
ing the chunking technique, as detailed in Section 4.5. This technique elim-
inates the need for manual weight assignment and tuning by automatically
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assigning weights according to the significance of data points in predicting
outcomes on the validation set, which is selected to closely resemble the test
set.

In particular, we advocate assigning weights inversely proportional to the
logarithm of error rates, akin to the principles of boosting.

αm =
1

2
log

1− em
em

This method aims to dynamically adapt to the evolving nature of the data
distribution and enhance the model’s resilience to temporal shifts.

4.7 Comparison of Classification Algorithms

It’s important to choose the right machine-learning algorithm that best fits
the nature of your data and the problem you’re trying to solve. Logistic
regression may not always be the best choice, especially if the data violates
its assumptions. The data is prone to human error and false reporting of the
crime, So we need to study the quality of the data; if we have more outliers,
then a model like SVM, which is robust to outliers, might be a better fit.
We will test different classification algorithms such as decision trees, random
forests, and support vector machines to predict the type of crime based on
location and time. This will help us identify the best algorithm for this
prediction task. We will compare the performance of the different classifiers
using appropriate metrics such as accuracy, precision, recall, and F1-score.
This will help us identify the best model for predicting the type of crime
based on location and time.

4.8 Generalisation, Regularisation & Selection

We cannot increase features as discussed above, We need to select a set of
features that impact the most. The general technique to explore feature
selection is consider all the possible combination of features, which will be of
the order 2K , which is not feasible to achieve. Forward selection, Backward
selection, mutual information and correlation analysis algorithms will achieve
polynomial order O(K) by using heuristics. but each of the algorithms are
known to have limitations.

Regularisation is one of the well studied aspect of machine learning to
improve generalisation. We will study the feature relevancy using regular-
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isation. L1 regularisation is known to nullify some features, for a given
hyper-parameter resulting in feature selection. We are interested to find an
answer for whether regularisation provide better feature selection compared
to the classical methods in O(K) or O(1).

We will try to leverage the auto regularisation and the robust to outlier
nature of SVM. However, SVM suffers from its own problems. The data
imbalance Figure 1 will make SVM unstable as studied by [1]. Kernel meth-
ods needs huge memory in order of N2, where N being the number of data
samples. given the samples in millions it is practically impossible to compute
kernel based functions. We need to further study sampling based tricks to
effectively use SVM. This makes a statement that generalisation is not a free
lunch.

.

5 Experimental Setup

5.1 Cross-Validation

In case we face any accuracy issues, we will evaluate the performance of dif-
ferent classifiers using cross-validation techniques. This will help us estimate
the accuracy of the model and detect any over fitting or under fitting issues.

5.2 Hyper-parameter Tuning

We will optimize the hyper-parameters of the chosen algorithm to achieve
the best performance. This will help us fine-tune the model and improve its
accuracy.

5.3 Metric

In addition, we need to use a metric that, in nature, is more sensitive to the
underrepresented classes. Hence, we use the macro-averaged F1 (Macro-F1)
metric for our evaluation.
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6 Results

We test three different classification algorithms such as decision trees, random
forests, K-NN, Logistic Regression, MLP to predict the type of crime. This
will help us identify the best algorithm for this prediction task. We will
compare the performance of the classifiers using the f1 score metric. We will
use 5-fold cross-validation to help us identify the best model.

For each classifier introduced, we incorporate our proposed methods and
conduct an ablation study to comprehensively assess how our approaches,
as outlined in Section 4, align with each classifier. Subsequently, we delve
into a detailed discussion regarding the implications of these approaches, as
expounded in Section 7.

Model Transformation Train Accuracy Test Accuracy F1-score Time

LogisticRegression
- 11.59 9.03 0.75 616.34
L1 19.16 18.56 0.91 583.45
L2 19.21 18.51 0.99 535.10

SVM
Linear kernel 19.21 18.51 0.99 1571.28
RBF 24.46 22.32 1.21 2500.11

KNN faisis - 53.43 28.72 0.12

Decision Trees

Random Forest 99.98 93.15 88.56 81.58
Random Forest (No Embedding) 79.99 60.27 43.26 64.79
Random Forest + Over Sampling 99.99 92.97 91.26 43.01
Random Forest + Under Sampling 100 69.36 49.44 0.91
Random Forest + Generative Sampling 100 3.88 2.74 52.21
Random Forest + Chunk 99.99 91.72 73.89 2.24
Random Forest + Generative + Chunk 100 3.81 2.68 183.78
Random Forest + Distribution Shift + Chunk 99.98 91.91 72.86 22.47
Gradient Boosting 88.12 88.66 88.02 2224.26
Light Boosting [LGBMClassifier(learning rate=0.01, num leaves=100)] 93.92 93.86 83.38 31.01
Chunk + Light Boosting 93.86 92.85 82.04 27.01
Distribution Shift + Light Boosting 93.83 93.61 92.77 31.21

MLP
- 22.10 21.61 1.61 262.92
Chunk + L2 21.61 20.81 1.56 81.6
Distribution Shift + Chunk + L2 21.60 20.81 1.56 77.4

Table 3: Results

The heatmap in Figure 8 displays the confusion matrix of our best-
performing classifier. From the heatmap, it is evident that most of the
misclassifications occur in the STALKING, ASSAULT, or BATTERY cate-
gories. These categories are semantically similar, which could make it difficult
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for the model to distinguish between them without additional information.
Additionally, we observe that the oversampling method only improves the
performance of the RandomForest classifier. This could be due to the highly
imbalanced labels, which may render the oversampling method ineffective for
other classifiers.

7 Summary and Conclusions

We first introduced the Chicago crime dataset and described its importance
as a valuable source of information on crime patterns in the city. We then
provided statistics about the data and experimented with our hypotheses on
the data. Our analysis focused on various aspects of the dataset, including
the trend of crime rate over the years, the distribution of total crime in each
police district, and the nature of crimes in each district. We also investigated
whether the crime statistics changed according to the month of the year and
the time of the day.

In the subsequent section on data pre-processing methods, encompass-
ing dimensionality reduction and feature selection, our findings align with
the analyses presented in the preceding section. We demonstrate that the
implemented pre-processing techniques contribute to enhanced classifier per-
formance.

Subsequently, we delve into the challenges inherent in the dataset, en-
compassing issues such as class imbalance, distribution shift, multimodality,
and scale. To address these challenges, we propose a range of approaches
aimed at mitigating the identified issues and improving the robustness of our
models.

In the concluding phase, we conducted a comparative analysis of the per-
formance of four distinct classifiers—Random Forest, Logistic Regression,
SVM, and Decision Trees—specifically applied to the task of crime predic-
tion. Through an ablation study, we aimed to discern the optimal combina-
tions of these approaches under varying settings. The following key insights
summarize our findings:

• Decision Tree-based models perform well on large-scale classification.

• Gradient Boosting further brings the test performance close to training.

• Chunking helps to give more weight to recent data compared to older
ones.
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• Undersampling in large-scale data leads to catastrophic performance
drop.

• Learned embeddings are more expressive compared to categorical fea-
tures.

• In large datasets, regularization’s importance diminishes; higher com-
plexity boosts performance, and distribution shift plays a pivotal role.

Overall, our work contributes to the growing body of literature on crime
prediction and data analysis by providing insights into the Chicago crime
dataset. We believe that our findings can be used to develop effective strate-
gies for crime prevention and to inform policy decisions aimed at reducing
crime rates in the city of Chicago.

Among the notably successful algorithms, tree-based methods exhibit
promise, mirroring the decision-making processes employed by law enforce-
ment officers. While individual trees are characterized by relatively low vari-
ance, bagging and boosting techniques will enhance their overall performance.

For this work we used scikit-learn [5] library for machine learning algo-
rithm, and seaborn [7] library for visualization.

8 Future Works

It is worth mentioning that our analysis of the Chicago Crime dataset fo-
cused mainly on examining time-related information. However, there are still
many opportunities for future work with this dataset. One possible avenue
for future research would be to integrate additional external data sources to
enrich our understanding of crime patterns in the city. For example, demo-
graphic data like income, education, and race, or GIS models, could be used
to identify patterns of crime in different neighborhoods and provide insights
into the social and economic factors that contribute to crime.

In addition, more advanced machine learning techniques, such as deep
learning and natural language processing, could be employed to analyze the
unstructured data in the dataset, such as crime descriptions and location
data. These advanced techniques can help to identify subtle patterns and
relationships in the data that may not be immediately apparent using tra-
ditional machine learning methods like random forests, KNN, and ensemble
methods. Future research could explore the use of these advanced techniques
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to enhance our understanding of crime patterns and support the development
of more effective crime prevention and intervention strategies.

The current state-of-the-art models for tabular data include TabTrans-
formers, as introduced by Huang et al. [4]. Our embedding approach aligns
with elements of this methodology, and we observe enhanced gains as we
augment the model’s capacity, leveraging the large scale of data in conjunc-
tion with relatively smaller features. Our interest lies in investigating how
the model’s capacity, specifically the number of layers, contributes to perfor-
mance improvement.
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9 Appendix

Feature Type Description

Location Description Categorical Describes the location where the crime occurred
X Coordinate Geospatial Longitude where the crime occurred
Y Coordinate Geospatial Latitude where the crime occurred
Community Area Categorical Area or neighborhood where the crime took place
Police Beats Categorical Police beat where the crime was reported
Wards Categorical Political division where the crime occurred
District Categorical Police district where the crime was reported
Year Temporal Year when the crime was reported
Date Temporal Exact date and time when the crime was reported
Description Text Detailed description of the crime
Primary Type Categorical The main category of the crime
Census Tracts Categorical Census tract where the crime occurred
Block Categorical Specific block or street where the crime occurred
Zip Codes Categorical Postal code of the crime location

Table 4: Snapshot of Chicago Crime dataset

Primary Type: Primary type of the crime committed. containing 36 prime
types of crime. here is a small number of crimes types:

• ARSON

• ASSAULT

• BATTERY

• BURGLARY

• CONCEALED CARRY LICENSE VIOLATION

• CRIM SEXUAL ASSAULT

• CRIMINAL DAMAGE

• CRIMINAL TRESPASS
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Figure 4: Crime per police districts

• DECEPTIVE PRACTICE

• GAMBLING

• HOMICIDE

• HUMAN TRAFFICKING
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Figure 5: Distribution of crime per police districts
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Figure 6: Distribution of crime per police month

Figure 7: Distribution of crime at each time of day
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Figure 8: Normalized Confusion Matrix Heat map
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