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Abstract

In this document, I tried to list down the different techniques for solving fairness
problem as mentioned in Lahoti et al.. To solve this task, I tried to look for
approaches used in the general fairness task - invariant with respective label -
Sadeghi et al., Sadeghi et al. - with an idea that we can relax the label constraint
going forward. The general approach is to play an adversarial game, In which
adversary tries to gain information of sensitive label and encoder tries to make it
difficult for the adversary. These games are generally zero-sum games / min-max
problems. So to understand, I have studied min-max optimisation. Some general
comments are made how zero-sum games with probability constraints lead to the
re-weighting approaches which are widely used in solving the problem - Chai et al.,
Chai and Wang, Lahoti et al., Setlur et al..

1 Introduction

We want to move from an unfair space to a fair space. The question we are interested in exploring is
How do we construct a fair space?

2 Mathematical Preliminaries

We define W,X as the column space of W, X respectively. where W is the fair space and X as the
input space. We want to learn the transformation H such that any vector in the subspace of X can be
transformed to W. Z,Y denotes latent space and prediction space. and we use S for sampling and
sensitive space appropriately.

2.1 Problem definition

Find the equation such that reconstruction error is minimum. To put formally,

min
H

max
||x||≤L

||WHSX −X||2 (1)

If we construct know the fair space then this equation will give the optimal solution, but how to
construct a fair space, We look at Class conditional permutation Idea in next section.

2.2 Class conditional permutation (CCP):

Construct a permutation matrix by interchanging the subset of features by other data point. For
example, Initial dataset X and y are transformed to X̂, y
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The bold features pointed out are interchanged, the first 2 rows belong to class 0 and the rest belongs
to class 1.

Does the basis formed after class conditional permutation form a fair space? No. For example, points
[3,2] and [5,4] belongs to one class separated by linear boundary, y = x, Initially both points belong
to one class but after CCP, new points [3,4] , [2,4] would lie on either side of the boundary and we
are losing information on y classification.

From this conclusions, we cannot apply the CCP idea directly on the input space, rather we investigate
assumptions for which CCP idea is valid. zi|y ⊥ zj |y for all i, j ∈ 1, 2, · · · , r. Also zl ⊥⊥ y for all
l ∈ k, k + 1 · · · , r. Two ways we can ensure causal Independence.

• CCP to work, we need to have latent space should have class conditional independence. out
of the 7 causal diagrams for 3 variable scenario identified in the Wang and Boddeti , only
z1 ← y → z2, All the other will leak information when conditioned on y.

• Remove r-k dimensions or Randomize r-k dimensions, it is equivalent to randomised
experiment. Is class conditional permutation equivalent to randomised experiment?

Ideas to solve the above 2 problems

• Explore making the latent features independent. One idea was implemented in Sadeghi et al.

• One Idea to solve the problem with permutation is Re-bias mentioned in the section 4

Another central assumption with the permutation is s ⊥⊥ Y , i.e we cannot remove the dependence if
it is correlated with Y.

2.3 Causality

The validity of the idea should be explored from the perspective of all the possible tools available to
us. The idea should be consistent with along on the dimensions.

2.4 Duality

Solving any min max problems with constraints. Generally min-max problems are solved by analysing
the equilibrium point. Generally this equilibrium point is a saddle point.

2.4.1 Theory of Duality

Principles of Duality is used to solve constrained optimisation involving multiple players. Lets
formulate a multi-player games in Game theory, We then apply the duality to solve a multiplayer
game, So what strategy - probability distribution across rows - should u and v decide on the given
constraints.

Where players u and v play a game and P is an expected cost matrix, play u selects rows and player v
selects columns. both players try to minimize the cost irrespective of other player choices.

min
u;u∈S

max
v;v∈S

uTPv

where S, is probability simplex. As a player, the strategy to have better performance for the worst
choice by the other player, other player will choose worst possible outcome.

min
u;u∈S

max
i∈1,2,··· ,n

((uTP)i) (2)
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The duality of the equation is written as,

minimize ϵ

subject to uTP ⪯ ϵ

u ⪰ 0

Σu = 1

(3)

maxmize ϵ

subject to Pv ⪰ ϵ

v ⪰ 0

Σv = 1

(4)

The duality gap is given by ϵ6 − ϵ5 ≥ 0, This can be seen as second player always has the advantage.
In case of strong duality ϵ6 − ϵ5 = 0.

The conditions required for using sub-gradient methods are constraints and functions should be
convex, convexity of the constraints is proven by the closed set condition, u1, u2 ∈ C =⇒
λu1 + (1− λ)u2 ∈ C, given 0 ≤ λ ≤ 1

Solving 3 using sub-gradient method and we apply projection techniques to improve the convergence
as suggested in EE364b lets write Lagrangian and try to solve it.

minimize ϵ+ λT (uTP− ϵ) + µT (−u− 0) + γ(Σu− 1)

subject to λ ⪰ 0;µ ⪰ 0

The objective is to solve maxλ,µ g(λ, µ) = infu[ϵ + λT (uTP − ϵ) + µT (−u − 0) + γ(Σu − 1)].
with respective to the above constraints on λ, µ. For example, This EE364b suggests that constraints
are also enforced in the projection space. One idea is to have gradients only towards the direction of
equality constraints and not in the direction of it. So we nullify the component in the direction of
constraint subspace, or project gradients in the orthogonal subspace. Suppose Ax = b is the constraint,
(I−A(ATA)†AT )∆z is the modified gradient. and In our example, Σu = 1 =⇒ [1, 1, · · · , 1]u = 1
, Similarly to project onto λ ⪰ 0 =⇒ λ = [λ]+

Algorithm 1 Constraint Sub gradient Optimisation
Require: λ ⪰ 0;µ ⪰ 0

eo ← 0
ϵbest ←∞
ubest ← None
γi, γo, lro ← 0.1
while eo ≤ n do

ei ← 0
while ei ≤ n do
loss = ϵ+ λT (uTP− ϵ) + µT (−u+ 0) + α(Σu− 1)
A = [1, 1, · · · , 1]
u = u− γi(I −A(ATA)†AT )∂loss

u # projection idea
ei+ = 1

end while
g(λ, µ, α) = ϵ+ λT (u∗

TP− ϵ) + µT (−u∗ − 0) + α(Σu∗ − 1)

λeo+1
= [λeo + lro

∂g
λ ]+; µeo+1 = [µeo + lro

∂g
µ ]+; αeo+1 = αeo + lro

∂g
α #max g

lro = γi√
eo

# decreasing lr for convergence EE364b
eo+ = 1

if ϵ <= ϵbest then ubest = u; ϵbest = ϵ # Not a descent algo, so need to store best value
end if

end while

Geometric perspective of the algorithm
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The Lagrangian constraint optimisation, In case of equality constraints, Geometric interpretation
can be looked as to find a point on a level curve g(x) = k, where the gradient is flat to level surface
or to put in a mathematical way, if there was a component of gradient in the direction level surface
subspace, then that point is not a max/min, because we can move in the direction of gradient in the
level surface and optimise the objective function further with satisfying the constraint. So but this
argument, gradients on both surface are parallel to each other.∆g(x) = λ∆f(x). To extend the same
principle to the inequality constraints, we consider to enforce an additional constraint, λ ≥ 0. Another
perspective to look at it is Suppose your constraints are satisfied, then λ < 0, and by projection idea
we will nullify it and if λ > 0, we need to optimise the main equation with minx f(x) + λg(x),
maximising the dual can be interpreted as maximising the weight of unsatisfied constraint on surface
of lower bound of primal.

Remember that this approach is not descent approach, where we end up reaching the minima, but
these methods optimise the search space, with guarantees for convergence of the best solution which
is given by the primal objective. more proof on convergence is provided in EE364b. General ideas
for convergence are scheduling the learning rate.

2.4.2 Solving a Game theory problem

Solving a linear game theory problem with the above technique Suppose matrix cost matrix P in the
min-max games is given below.

P =



0 1 1 1 2 1 2 3 2 3 2
1 0 1 2 3 2 3 2 1 2 2
1 1 0 1 2 2 3 3 2 2 1
1 2 1 0 1 2 3 2 3 3 2
2 3 2 1 0 3 4 1 2 3 3
1 2 2 2 3 0 1 4 3 4 3
2 3 3 3 4 1 0 5 4 5 4
3 2 3 2 1 4 5 0 1 2 3
2 1 2 3 2 3 4 1 0 1 2
3 2 2 3 3 4 5 2 1 0 1
2 2 1 2 3 3 4 3 2 1 0


As we can see the objective of the row player is to find optimal distribution on 11 choices, for any
distribution chosen by col player. As you can see that there are multiple solutions exists to the above
problem, but 2.5 is minimum that can be obtained, one solution is 1/2 , 1/2 bets in row 1 and 2. The
above algorithm resulted in a solution with a cost of 2.53, 1.2%, off from the optimum value.

uT
∗ = [ 0.22 0.21 0.057 0.0 0.0 0.15 0.078 0.0 0.28 0.0 0.0 ]

λT
∗ = [ 0.0 0.0 0.0 0.0 0.037 0.0 0.46 0.0 0.0 0.32 0.0 ]

µT
∗ = [ 0.0 0.0 0.0 0.022 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ]

α∗ = −13.53
As we are utilising the projection idea all the constraints will be satisfied by the optimal. µ∗[3] ̸= 0,
indicates that row 3 probability is slightly negative. and λ∗[6], λ∗[9] ̸= 0, which indicates that 6,9
rows are optimising to find minima for itself in the case of max constraint.

2.4.3 Solving a multi player multi objective convex-concave problem

We solve the same problem as in EE364b, in convex-concave game setup. This problem is different
from the previous problem in a way that, players control 2 different variables and operation on their
on constraints. So to put it mathematically.

max
u

min
v

f(u, v)

subject to Σu = U ; Σv = V ;u, v ⪰ 0

The above equation can be decomposed in to min and max with its constraints.

max
u

[
min
v

f(u, v)
]

subject to Σu = U ;u ⪰ 0 [subject to Σv = V ; v ⪰ 0]
(5)
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We can optimize the min and max constraints in an adversarial fashion, each convex optimization be
it min or max can be solved by the above mentioned ideas. The 5 can be future written as

max
u

f(u, v∗)

subject to Σu = U ;u ⪰ 0

min
u

f(u∗, v)

subject to Σv = V ; v ⪰ 0
(6)

The results obtained are similar to the ones obtained in the EE364b, and similar insights can be

drawn from the result.1

pT∗ = [ 2.8 2.3 2.6 0.38 2.9 0.0 2.6 2.3 1.4 2.7 ]

nT
∗ = [ 3.3 0.0 0.85 0.0 2.6 0.0 0.89 0.0 0.0 2.4 ]

λT
1∗ = [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ]

λT
2∗ = [ 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.023 0.0 ]

2.4.4 How can we solve Domain shift or adaptation problem?

Generally models are good at minimising the error on the training set. So the model performs well
if the testing distribution is close to training distribution. This domain adaptation problem is more
serious in semantic segmentation as pointed by the Truong et al.. If we train the model on the object
detection task, smaller objects have less impact on the gradient loss and larger objects have huge loss
in the semantic segmentation space. To fix this issue, Truong et al. have formulated as mentioned in 8.
Idea is to re-balance the weights of pixels as well as use surrounding pixel information for semantic
segmentation. However, math provided in the paper is not convincing argument to use transformer
based auto regression for using surrounding pixel information.

To fix this problem in a robust way we can model it as a there should be a uniform loss suffered by all
the classes / groups, which brings us to the techniques in the fairness domain, where the constraint is
similar to demographic parity. Consider the below equation

min
f,ϵ

ϵ

subject to L(f(x|s), y)− L(fs(x|s), y) ≤ ϵ
(7)

where fs(x|s) is the best model that fits for the group s. and L is the convex loss function. ϵ is the
gap between the general model, which is trained on all groups data and the model trained specifically
on group s. Always fs will be the upper bound performance on who the general model performs.

The 7 can be geometrically looked as a zero sum game between all groups trying to minimize its
error, and also the global agent f trying to minimise the training error.

1Duality experiments code
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As we write the duality of the above equation, we see how it is equivalent to reweighing ideas.

min
f,ϵ

ϵ+

∫
λ(s)[L(f(x|s), y)− L(fs(x|s), y)− ϵ]

subject to λ(s) ≥ 0 ∀s

min
f,ϵ

ϵ[1−
∫

λ(s)] +

∫
λ(s)[L(f(x|s), y)− L(fs(x|s), y)]

subject to λ(s) ≥ 0 ∀s

min
f,ϵ

∫
λ(s)[L(f(x|s), y)− L(fs(x|s), y)]

subject to λ(s) ∈ Ps

(8)

Where Ps is the probability simplex, indicating λ(s) is a probability function. As we can see
ϵ[1−

∫
λ(s)]; λ(s) ≥ 0 ∀s optimisation is nothing but enforcing λ as probability over s. Solving

8, using the projected sub gradient methods lead us to the above mentioned iterative approach.

f∗ = inf

∫
λ(s)L(f(x|s), y)

g(λ(s)) =

∫
λ(s)[L(f∗(x|s), y)− L(fs(x|s), y)]

λ(s)t+1 = π([λ(s)t + α∆g(λ(s))]+)

(9)

Where π is a projection onto probability simplex. We start with training distribution,λ(s) and then we
find the function that minimizes with the initial distribution of data. but as the iteration progress, the
distribution shifts adding more weight to the groups g, where the gap to the best performing model
on the group is highest. This indicates that all the adversarial re-weighting approaches mentioned in
Lahoti et al., Chai et al., can be linked to solving the zero-sum game with uniform errors across s,
which is having a better demographic parity.

Figure 1: Problem: non uniform gap Figure 2: Solution: near uniform gap

To illustrate the above phenomenon, we perform the same experiment as in Gnanasambandam and
Chan, Linear de-noising, x = y + σ where the model task is to denoise σ, We choose a linear model,
f(x) = a*x, and loss is simple reconstruction loss ||f(x)− y||2. From the results we observe, 3 db
increase in reconstructed PSNR and the gap for the low noise groups seems to be decreasing. As
Figure 3, indicates the game between the zero noise samples, and high noise samples to minimise
the gap, if we minimize error for low noise samples, gap increases in the high noise samples. and
finally equity is achieved, we find a saddle point of distribution which re-weights easy samples more
compared to the hard samples, so that they have contribute similar amount in the gradient space,
assuming large noise samples are hard samples, and contribute more to the loss.
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Figure 3: weights of different noise samples

Can we apply the uniform gap technique mentioned in Gnanasambandam and Chan to semantic
segmentation problem of Truong et al.

2.4.5 With sensitive information (s) available:

Suppose we know the s, and s is linearly related to X, then the paper Ravfogel et al., paper formulated
the problem as min max zero sum game between the projector (P) to in-variance space of s and θ
which try to get sensitive information after separation.

min
θ

max
P ;PTP=I

||s−XPθ||2 (10)

The sketch of proof the paper have followed is at the saddle point, ∂.
∂θ = 0 and the optimal θ, If for

this θ, P can’t optimise further then the equilibrium is achieved. i.e component of P should equal
to zero, which they prove is P = Null space of XT s. However this paper did not provide a closed
form solution if s is a categorical features. The paper Ravfogel et al. applied multi objective convex,
concave game, to apply the projection ideas to constraints, constraints need to be closed in convex
space. but consider PTP = I is not closed under convex assumptions, 11.2, Solving with the 2.4.3,
doesn’t always guarantee a convergence.

Ignoring the convexity, To take full advantage of constraint optimisation, we need to find the projection
function to enforce the constraints.

How to enforce PTP = I? To formulate the problem, we need to find matrix P such that ||P ′−P ||2,
is minimum, where P ′ is the optimal matrix obtained from max game. To put in the equation form,
π(P ′) = P ∋ minP :PTP=I ||P ′−P ||2. To understand the geometric perspective, Imagine the eigen
vectors of matrix P, the best reconstruction is squishing them onto unit hyper sphere, if there was
some other component then the error will increase by the angle of rotation of eigen vectors, So,
Suppose P ′ = Σλiviv

T
i then P = Σviv

T
i and the minimum error is P = Σ(1− λi)

2, This true only
for λi ≥ 0.5,λi ∈ R To ensure this, P = (PT+P )

2 , P is symmetric matrix and have real eigen values.
Same trick is applied in the paper Ravfogel et al..

11.1 derives the closed form solution to the above equation Complete the proof: 3rd degree solution
for P, prove the solution maximises ( second derivative ≥ 0 ) and satisfies constraints. (θ∗, P∗) is a
saddle point

2.4.6 Invariant representation

As enforcing independent constraints on latents used by Sadeghi et al., We can model as latents should
have identity covariance matrix, Suppose Z, denotes latents. the drawback of the below approach is
that, it will only ensure there is no linear dependency.

(Z− Z̄)T (Z− Z̄) = I (11)

This equation can be enforced as hard constraint, which can be solved by a Lagrangian multiplier.
This equation can also be enforced as a soft constraint, and tune the hyper parameters to obtain the
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trade-off. Similar idea of enforcing constraint in the loss function is explored in the Zbontar et al.
Suppose you pass the features X, to a encoder that gives latent Z. The equation we try to solve from
the paper Sadeghi et al.

min
θE ,Wy,by

||WyθEX +By − Y ||2

such that inf
Ws,Bs

||WsθEX +Bs − S||2 ≥ ϵ

This is very hard constraint optimisation to solve as g(λ) = λ(ϵ− f(θE ,Wy, by,Ws, Bs)) the λ be
either 0,∞, which is unstable, So we can modify the equation as

min
θE ,Wy,by,Ws,bs

λ||WyθEX +By − Y ||2 + (1− λ)||WsθEX +Bs − S||2 (12)

We can solve the above equation, with either the matrix methods, or we can also solve with the eign
sum notion as done for the ?? both give the same result and the convexity proofs are also similar
to 11.2. We can remove Wy, by,Ws, bs from the closed form solution of linear regression model,
where the irremovable loss WyX any vector in Wy space can be represented, So irremovable error
is orthogonal to Wy. The above equation can be modified as Assume θEX = M and PM⊥ =
(I −M(MTM)†MT )

min
θE

λ||(I −M(MTM)†MT )Y ||2 − (1− λ)||(I −M(MTM)†MT )S||2

min
θE

trace(PM⊥(λY Y T − (1− λ)SST )PM⊥)

min
θE

trace(PM ((1− λ)SST − λY Y T )PM )

trace(AB) = trace(BA) if dim A is mxn and dim B is nxm and P 2 = P as P is a projection matrix

min
θE

trace(PM [(1− λ)SST − λY Y T ])

As we know that M = θEX ∈ rowspace(X), lets construct orthonormal row space of X by Gram-
Schmidt method let it be Lx,M = LxGE = θEX , there exists some combination in orthonormal
space of Lx, from properties of Lx, L

T
XLx = I

min
θE

trace(LxGE(G
T
EGE)

−1GT
EL

T
x [(1− λ)SST − λY Y T ])

We don’t want any GE but orthonormal vectors which are subspace of rowspace of X / subspace of
some rotation of LX , which we can assume one solution of all the solutions is GT

EGE = I

min
θE ;GT

EGE=I
trace(LxGEG

T
EL

T
x [(1− λ)SST − λY Y T ])

from the above property of trace,

min
θE ;GT

EGE=I
trace(GT

EL
T
x [(1− λ)SST − λY Y T ]LxGE)

This optimisation is similar to the min version of PCA so the solution of GE is negative eigen values
of B = LT

x [(1− λ)SST − λY Y T ]Lx

Extending this approach to handle multiple modes of dependency. Sadeghi et al..

If the dependency is captured by covariance then it is nothing but capturing the linear dependency,
equivalent to fitting a line. Gaussian kernel can be seen as graph, with nodes connected by the
Inverse distance metric ( either Gaussian or any inv dist metric ). why cant we work with the same
formulation as the earlier work to fit linear model to X̃? .

Assume we want to reformulate 12 to change the formulation with Dep function

max
θE

λDep(fθE (X̃), Y )− (1− λ)Dep(fθE (X̃), S) (13)
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Where X̃ij = K(xi, xj).

Same derivations apply to this scenario, but one additional regulariser is independence of θiX ⊥⊥ θjX
and θi ⊥⊥ θj Once we expand the Dep equation in terms X,Y,S we end up with a Raleigh coefficient
equation that can be solved with closed form like 11.3 or can use Rayleigh Quotient Iteration
algorithm mentioned in TrefethenBau.

Can I solve the above equation with iterative approach, To impose the constraints as GTG = I , we
can have independent constraint on latent as done in Zbontar et al.. But it is common practice to use
the ARL with no closed form solutions and still work with convergence as used by Ravfogel et al.

Try this experiment on non-linear functions to prove that iterative algorithms also show convergence
and if the dep is linear then the non linear function also gives the same solution as above.

2.4.7 Duality in Fairness Problems without sensitive information

From this understanding lets solve 1 as already solved by Eldar and Dvorkind but here I give out a
different version of proof.

min
H

max
||x||≤L

||WHS∗x− x||2

min
H

max
||x||≤L

((WHS∗ − I)x)T ((WHS∗ − I)x)

min
H

max
||x||≤L

xT (WHS∗ − I)T (WHS∗ − I)x

let (WHS∗ − I) = A, the max equation becomes maximum Eigen value of A

min
A

max
eigval

ATA

As the matrix ATA is symmetric positive definite the condition can be is equal to solving,

A = 0

Only this matrix has smallest largest positive eigen values which is 0, Eigen values of

WHS∗ = I

H = W †S∗†

H = (WTW )−1WTS(STS)−1

So
WHST = W (WTW )−1WTS(STS)−1ST (14)

Therefore, 14 becomes the closed form solution to the min max problem, Assuming W,S are full
column rank matrices. The challenge is how do we construct fair space.

Approach 2: We can also think about this problem in a different way, Wy will always lie in the
subspace of W, so if W ⊥ is irreducible error in x, So solving similarly 15 will give the same result.
We can also observe that we can remove PW⊥x, out of the norm as it is projection matrix.

min
H

max
||x||≤L

||WHS∗x− PWx||2 (15)

.

2.5 Projection Ideas

Minimum projection error is given as the error for the projected vector should be orthogonal to that
subspace. Vector that is present in a subspace is written by Wy, this gives, any vector in W.

WT (Wy − y) = 0 (16)

Wy = W (WTW )†WT y
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So W (WTW )†WT is the orthogonal projection. Instead for the constrained sampling as mentioned
in Sadeghi et al. We want all the error to be orthogonal to the input space, S, this way you are
maximising when projected to fair subspace W.

ST (Wy − y) = 0 (17)

Wy = W (STW )†ST y

If we take the previous notation of projections in duality,

WHS∗ = W (STW )†ST

3 Max margin: SVM, connection to graphs

Suppose you have a graph G(V,E), for the problems such as max-flow, travelling salesman problems,
requires solving constraint optimisation. For solving these NP-Hard and NP-complete problems, we
need to formulate the problem as a constraint optimisation and use the techniques mentioned below.
In optimisation problem we show that any primal optimisation can be written as max flow and the
dual as min-cut.

Questions we are interested in exploring are

• Can I solve max flow and min cut problem with optimisation?
• Can I extend it to the TSP algorithm and see how far off the optimisation leads to?
• How can I interpret kernel SVM as a fully connected graph.
• How can show that kernel SVM as a max flow and min-cut?

3.1 Optimisation Algorithms

4 Re-biasing: One method to debias without s

The paper Bahng et al. proposes a new method based on the nature of bias in the models, Suppose
M1,M2 are multiple models and these models capture the bias in X, i.e learn spurious features.
Then we can make our model M independent to learned representation M1,M2. This idea is further
extended to video by shuffling frames as spurious learnt model. We can further extend this idea to
any model M1 which learns spurious attributes it can be M1(X) = S, which will make the problem
as if solving with sensitive label information.

How to create M1,M2? The way they modeled in the Image classification models is based on the
assumption that features learnt small receptive fields are biased M1(X) = y,where M1 is modeled
as kernel of size 1x1, which will learn pixel level features like color. and M is modeled as traditional
3x3 kernel. Similarly for CelebA they modeled M1 as 3x3 and M as 7x7 kernel.

The objective function is

max
α

min
θ

Dep(fθ(X), gα(X))

such that L(fθ(X), y) ≤ ϵ

L(gα(X), y) ≤ ϵ

This can be seen as multi objective optimisation as mentioned in 2.4.3 and can be solved with
alternating gradient decent.

One drawback of this approach is to come up with M1,M2 · · · functions and it is not always
guaranteed that these features are completely independent to the task and this not a complete concave-
convex optimisation. As L(gα(X), y) is convex.

5 UDA: Unsupervised Domain Adaptation

• Can I take any ideas from UDA to apply for fairness.
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Gaps in understand duality and projection ideas

• Does dual ascent algorithm mentioned in Gnanasambandam and Chan give the same optimal
result?

• Does the primal and dual transformation applicable only in the case of strong duality? What
happens when there is weak duality?

• How do we know if a problem has a strong / weak duality?

• Understand max volume min cut problem of duality

• Study EE364b barrier method for convex - concave games.

• If s is known and W is ortho-normal basis to the decision boundary of s

6 Related Works[Incomplete]

6.1 Pre Processing

Remove the component of X from the subspace of S. This is achieved by fitting linear regression
between every feature of X and S, this way of implementation is available in fairlearn library.
Orthogonal projection onto S space, or Least squares projection of X on S, or gram Schmidt give have
the same impact. We stick with least squares because its gives us the parametric form, which can be
applied at test time. The X̂ is the feature space free from S information, and it is orthogonal to S

X̂ = (I− S(STS)−1ST)X

Suppose the solution to least squares is given by W

W = (STS)−1ST)X

X̂ = X− SW

6.2 In Processing

The big idea is to train model in an adversarial way to remove the S information. This can be achieved
by running a zero-sum game between predictor which tries to maximise predictive capabilities of
latent Z, and the adversary tries to predict sensitive attribute. We will examine Adversarial technique
as proposed by Zhang et al..

6.3 Post Processing

One of the popular post processing ideas is to set the treshold based on the objective function we
want to look

6.4 Metrics

Demographic Parity (DP):

Equalised odds (EOD):

Equalised opportunity (EOP) :

6.5 Analysis

We want understand the impact of Pre, In, and Post Processing, So we will run experiments on
Folktables dataset Ding et al.. We study how each of the methods work.

11

https://github.com/fairlearn/fairlearn/tree/main


Table 1: Classical Fairness (Folktables)

Method Accuracy Worst group Accuracy DP EOD EOP

Invariant Rep Sadeghi et al. 0 0 0 0 0
Invariant Alternating gradient decent 0 0 0 0 0
Linear Adv (LA) 0 0 0 0 0
Pre-Process + LA 0 0 0 0 0

7 experiments

8 Enforcing Priors [CVPR 2023]

The problem of out-of-distribution sampling is equivalent to having a prior of data distribution.
Suppose if you have a prior distribution of data then How can you enforce it in a neural network.
Truong et al., paper have explored the idea of enforcing constraint on How can smaller object, which
have less prediction pixels, likewise pointing to the problem of class imbalance in the pixel space.

8.1 Mathematical formulation

ŷ = f(X; θ)

minθ E
PXY ∼X×Y

(L(ŷ, y))

We can say that sampling x is equivalent to sampling ŷ. So PXY ∼ PŶ Y

To eliminate the class imbalance, we can sample the loss from the balanced class data. Let QXY

is the true prior distribution we want to enforce, In case of class-imbalance or Out-of-distribution
models, QXY ∼ U , where U is a uniform distribution.

minθ E
Qŷy∼Ŷ×Y

(L(ŷ, y))

minθ E
Pŷy∼Ŷ×Y

(L(ŷ, y) ∗ Qŷy

Pŷy
) (18)

minθ E
Pŷy∼Ŷ×Y

(L(ŷ, y)) +KL(Qŷy, Pŷy) (19)

Key assumption made in the paper Truong et al. is ŷ ⊥⊥ y and also we assume the labels in the data
are balanced, i.e In every batch of training we sample one from every class.

Pŷy = Pŷ ∗ Py;Qŷy = Qŷ ∗ Py;
Qy

Py
= 1

If we make such assumption then, equation 18 will reduce to

minθ E
Pŷy∼Ŷ×Y

(L(ŷ, y) ∗ Qŷ

Pŷ
)

Applying log or 19 and by using the convex property of log, will give us upper bound

≥ minθ E
Pŷy∼Ŷ×Y

(L(ŷ, y) + E
Pŷy∼Ŷ×Y

(ln
Qŷ

Pŷ
))

If we assume Q ∼ U then the second term is equivalent to maximising the entropy. This property
seems to be trivial and cannot be used in general settings, suppose we have situation where we can
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balance the segmentation pixels, smaller objects have smaller pixel prediction, In such situation this
equation will be helpful. First term in the equation is minimising the supervised loss, second term is
the regularizer / enforcing prior constraints.

P (ŷ) = Σ224×224
k=0 P (ŷk)P (ŷ\k|ŷk)) (20)

where k is each pixel classification in semantic segmentation. Similar to log convexity we will have
upper bound.

E
Pŷy∼Ŷ×Y

(ln
Qŷ

Pŷ
)) ≥ E

Pŷy∼Ŷ×Y

(Σ224×224
k=0 ln(

Q

P
(ŷk)) + Σ224×224

k=0 ln(
Q

P
(ŷ\k|ŷk))) (21)

Similar to our earlier assumptions Q ∼ U the first term is maximising the entropy for each pixel,
Second term is regressive loss, which is equivalent to predict only from context.

9 Zero-sum games

9.1 General solution to zero sum games

Generally the solution to zero-sum games are formalized as min-max problems, this interpreatation
dates back to the Adaboost paper. Can we use inspiration from the Adaboost, and dynamically
re-weight the samples and formalise the conditions and bounds from the original Adaboost paper.

• Read Adaboost paper and formalise the problem statement, look at the bounds and conditions
they are using and take inspiration from them.

10 Ideas

10.1 Actionable Items and next steps

• Mathematically formulate the problem.

• How do we combine Permutation idea 2.2 with 2.4.4 and use multi objective techniques
mentioned in the section 2.4 to tame the trade-off curve.

• Can I implement and test the alternating gradient decent as mentioned in 2.4 to the Sadeghi
et al.. Does this guarantee a convergence with right set of constraint?

• What happens to the accuracy if there is a shift in training and testing? Can we apply the
Gnanasambandam and Chan to balance this? How do we quantify the shift?

• Compare min max equation performance against using an hinge loss in all the re weighting
algorithms, As we can see that using an hinge loss is equivalent to solving a dual problem in
SVM.

• Image generation suffers from bias, some prompts include, people with drug overdose and
terrorists, How do we account for such bias? Can we quantify the bias?

10.2 Combined models trained on different data

Can we use these techniques and combine smaller models into a large model using One size fits all
paper Gnanasambandam and Chan Suppose we Combine models trained on MNIST and Image Net
and achieve better accuracy compared to the model trained on combined MNIST and Image Net data?
Does this paper solve the class imbalance problem by equally weighting all the classes? As you are
training with the objective of equally loss across all the classes?
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11 Additional Math

11.1 Matrix Differentiation

Matrix differentiation with eignsum method is intuitive and easy to solve complex differentiation.
We can also leverage chain rule, and convert complex matrices into simple simple know derivatives.
Example 1

∂(||s− θPPTX||2)
∂P

(22)

Lets break the above equation into smaller know differentiable terms.

K = PPT

U = θKX

∂(||s− θPPTX||2)
∂P

=
∂(||s− U ||2)

∂P

=
∂trace((s− U)(s− U)T )

∂P

=
∂trace(UUT − 2sTU)

∂P

=
∂trace(UUT )

∂P
− 2

∂trace(sTU)

∂P

Lets solve 2 differentiation separately, using eignsum notation.

∂trace(sTU)

∂P
=

∂s1iU1i

∂U1j
∗ ∂U1j

∂Kkl
∗ ∂Kkl

∂Pmn

∂s1iU1i

∂U1j
= s1iδij = s1j

where,

δij =

{
0 i ̸= j

1 i = j

and similarly for the second chain.

U = θKX

U1j = θ1pKpqXqj

∂U1j

∂Kkl
=

∂θ1pKpqXqj

∂Kkl

= θ1pXqj
∂Kpq

∂Kkl

= θ1pXqjδkpδlq
= θ1kXlj

and similarly for the third chain.

K = PPT

Kkl = PkzPlz

∂Kkl

∂Pmn
=

∂PkzPlz

∂Pmn

= Pkz
∂Plz

∂Pmn
+ Plz

∂Pkz

∂Pmn

= Pknδlm + Plnδkm
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Combining all three

∂trace(sTU)

∂Pmn
= s1jθ1kXlj [Pknδlm + Plnδkm]

= s1jθ1kXljPknδlm + s1jθ1kXljPlnδkm
= s1jθ1kXmjPkn + s1jθ1mXljPln

= Xmjs
T
j1θ1kPkn + θTm1s1jX

T
jlPln

∂trace(sTU)

∂P
= XsT θP + θT sXTP

∂trace(sTU)

∂P
= [(XsT θ) + (XsT θ)T ]P

Moving onto the Second term

∂trace(UUT )

∂P
=

∂U1iU1i

∂U1j
∗ ∂U1j

∂Kkl
∗ ∂Kkl

∂Pmn

= 2U1iδij ∗ θ1kXlj [Pknδlm + Plnδkm]

= 2U1j ∗ θ1kXljPknδlm + 2U1j ∗ θ1kXljPlnδkm
= 2U1j ∗ θ1kXmjPkn + 2U1j ∗ θ1mXljPln

= 2 ∗XmjU
T
j1θ1kPkn + 2θTm1U1j ∗XT

jlPln

= 2 ∗XUT θP + 2θTUXTP

= 2 ∗ [X(θPPTX)T θ + (X(θPPTX)T θ)T ]P

Solving the matrix equation for max P

2 ∗ [X(θPPTX)T θ + (X(θPPTX)T θ)T ]P = 2 ∗ [(XsT θ) + (XsT θ)T ]P

[X(θPPTX)T θ + (X(θPPTX)T θ)T ]P = [(XsT θ) + (XsT θ)T ]P

Solving for θ

∂(||s− θPPTX||2)
∂θ

=
∂(||s− U ||2)

∂θ

=
∂trace(UUT )

∂θ
− 2

∂trace(sTU)

∂θ
∂trace(sTU)

∂θ
= s1j

∂U1j

∂θ1k
U1j = θ1pKpqXqj

∂U1j

∂θ1k
= KkqXqj

∂trace(sTU)

∂θ
= s1jKkqXqj

= s1jX
T
jqK

T
qk

= sXTKT

∂trace(UUT )

∂θ
=

∂U1iU1i

∂U1j
∗ ∂U1j

∂θ1k

= 2U1jKkqXqj

= 2U1jX
T
jqK

T
qk

= 2UXTKT

∂(||s− θPPTX||2)
∂θ

= 2UXTKT − 2sXTKT
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Equating to 0 to find the optimum

UXTKT = sXTKT =⇒ θKXXTKT = sXTKT =⇒ θ = s(KX)†

Substituting θ in the optimum equation to find saddle point P∗, θ∗

XTKθT = sT =⇒ XTKθT = sT

11.2 Convexity of Linear concept Erasure

Assume,
PT
1 P1 = I

PT
2 P2 = I

Disproving if λP1 + (1− λ)P2

(λP1 + (1− λ)P2))
T (λP1 + (1− λ)P2)) = λ2I + (1− λ)2I + ((1− λ))λPT

1 P2 + (λ)(1− λ)PT
2 P1

= λ2I + (1− λ)2I + 2(1− λ)λ
[PT

1 P2 + PT
2 P1]

2
̸= I ∀P1, P2

11.3 Math Raleigh Coefficient Proof

Appendix D, Theorem 3 proof in TMLR Sadeghi et al..

max
X;XTCX=I

trace(XTBX)

where B,C are symmetric matrices, we use Lagrangian similar to the section 2

g(X,λ) = trace(XTBX)− < λ,XTCX − I >

∂g(X,λ)

Xpq
= ∂[XjiBjkXki − λil[XjiCjkXkl − δil]]

= XjiBjkδkpδiq +XkiBjkδjpδiq − λilXjiCjkδkpδlq − λilCjkXklδjpδiq
= XjqBjp +XkqBpk − λiqXjiCjp − λqlCpkXkl

= (B +BT )X − CTXλ− CXλT

= 2BX − 2CXλ

0 = 2BX − 2CXλ

BX = CXλ

This is equivalent to solving generalised eigen value equation. and solving the dual equation of
max g(λ)

max g(X,λ) = trace(XTBX)− < λ,XTCX − I >

= trace(XTCXλ)− 0

= trace(Iλ)

= max
λ

Σλλii

The last line implies all the positive eigen values of generalised eigen value equation. So solving
Bxi = λiiCxi

12 Optimisation Preliminaries

Most of the preliminaries of the optimisation are taken from the Boyd and Vandenberghe. Important
optimisation techniques are Constrained Optimisation, sub-gradient methods, and ADMM (Boyd
et al.). These constraint optimisation is used by Tian et al. to constraint the fine tuned weights
around the sphere of pre-training network weights. First we need to understand why does Lagrangian
multipliers work. The sketch of proof will be from the geometric perspective is given in Auroux. One
way we can also think as If there is a gradient in the plane of constraint, We can still achieve the
minima, so the gradient in the plane of constraint is 0. More on the second statement.
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12.1 Constraint Optimisation

Preliminary equation in constrained optimisation is given by the following equation

min
x⃗

subject to Ax⃗ = b

f(x⃗) (23)

where f is a convex and differentiable function, f : Rn → R. Using method of Lagrangian multipliers
we can modify the above equation assuming strong duality.

max
y

inf
x

f(x, y)

We can write g(y) = infx f(x, y). This can be solved by using gradient ascent.

Algorithm 2 Constrained Optimisation
Ensure: Ax = b

x← RAND1×N

y ← RAND1×N

αk ← lr0
for epoch← 1 to N do

xk+1 = infx g(x, yk)
yk+1 = yk + αk(Axk+1 − b)
αk+1 = αk√

k
▷ We can have different variations, constant, linear decay, step decay.

end for

To improve the speed of the algorithm we can use alternating optimisation rather than calculating inf
every iteration. cite the paper that proved alternating optimisation can yield similar results as to the
calculating inf . However, Tian et al. has used alternating optimisation, alternating every fa epochs.
Therefore we can modify the above algorithm as

for epoch← 1 to N do
xk+1 = xk − γk∇xg(x, yk)
if epoch %fa = 0 then

yk+1 = yk + αk(Axk+1 − b)
end if

end for

We can further relax the constraint of f being differentiable and using sub-gradients, we define
sub-gradient as any function h such that

g(y) ≥ g(x) + hT
x (y − x) (24)

we can observe that when f is differentiable we can replace hx = ∇xf(xk), the proof can be
obtained from the Taylor expansion. f(x+ δx) = f(x) + δxf ′(x) + (δx)2

2! f ′′(x) + · · · . If we use
the sub gradient methods it is not guaranteed to converge to the global optima, but we can find x∗ for
fbest − foptim ≤ ϵ. The proofs for convergence is completed in the EE364b.

Solving equation 23, We can formulate the problem as

min
x⃗

subject to x⃗ ∈ C

f(x⃗)

min
x⃗

subject to x⃗ ∈ C

f(x⃗) + yT (Ax− b) +
ρ

2
||Ax− b||2

Where C, is the subspace denoted by C = {x ∈ Rn|Ax = b}We can modify the above equation
and call it Augmented Lagrangians by adding ρ

2 ||Ax − b||2 to the minimisation equation as the
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objective does not change, only leads to a faster convergence cite the reference. We can also combine
yT (Ax− b) + ρ

2 ||Ax− b||2 into

r = Ax− b,
y

ρ
= u

yT r +
ρ

2
rT r =

ρ

2
(||r + y

ρ
||2 − ||y

ρ
||2)

=
ρ

2
(||r − u||2 + ||u||2)

Another form of writing the above equation with disentangled equations and constraints and bounded
by the equality x⃗ = z⃗.

min
x⃗=z⃗

f(x⃗) + gC(z⃗)

min
x⃗=z⃗

f(x⃗) + gC(z⃗) +
ρ

2
||x− z + u||2

Algorithm 3 ADMM
Ensure: Ax = b

x← RAND1×N

y ← RAND1×N

αk ← lr0
for epoch← 1 to N do

xk+1 = infx [f(x) +
ρ
2 ||x− z + u||2]

zk+1 = infz[gC(z⃗) +
ρ
2 ||x− z + u||2] =⇒

∏
C(xk+1 + uk) ▷ gC(z⃗) sub gradient = 0z ∈ C

uk+1 = uk + xk+1 − zk+1

αk+1 = αk√
k

▷ We can have different variations, constant, linear decay, step decay.
end for

12.2 Applications

In the Application section we target are simple linear models, and try to incorporate above mentioned
sub gradient and the ADMM methods and come with convergent algorithms.

12.2.1 Regression with absolute deviations

Objective is to minimise the L1 norm for the regression problem. We can write this problem as
min
z

subject to Ax− z = b

||z||1

Combining all the above properties we can perform alternating gradient decent as

xk+1 = inf
x

F (x) = yT (Ax− zk − b) +
ρ

2
||Ax− zk − b||22

=⇒ inf
x
[
ρ

2
||Ax− zk − b+

uk

ρ
||2]

=⇒ ATAx = zk +AT b− uk

ρ
+N (A)

= (ATA)−1(zk +AT b− uk

ρ
+N (A))

= (ATA)−1(zk +AT b− uk

ρ
)

The derivative of ||z||1 does not exist at z = 0, we can use the sub gradient method to account for the
gradient. This g satisfies the properties of sub gradients 24. This means there is no closed form that
exists but gradient decent can be applied.

g(z) =


−1 z < 0

1 or− 1 z = 0

1 z > 0
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zk+1 = inf
x

F (z) = ||z||1 + yT (Axk+1 − z − b) +
ρ

2
||Axk+1 − z − b||22

=⇒ inf
x
[||z||1 +

ρ

2
||Axk+1 − z − b+ uk||2]

=⇒ ∆z′k+1 = (b+ zk −Axk+1 −
uk

ρ
) + g(zk)

= zk − αρ(b+ zk −Axk+1 −
uk

ρ
)− g(zk)

The latent variable u can be updated according to 3

uk+1 = uk +Axk+1 − zk+1 − b

for epoch← 1 to N do
xk+1 = (ATA)−1(zk +AT b− uk

ρ )
zk+1 = zk
for zconvergence← 1 to K do

zk+1 = zk − αρ(b+ zk −Axk+1 − uk

ρ )− αg(zk)

end for ▷ closed form exists as S 1
ρ (∗)

, but its complicated to derive
uk+1 = uk +Axk+1 − zk+1 − b ▷ gradient ascent

end for

12.2.2 Lasso Regression

We also want to add a constraint of restricting the weights to a fixed radii hyper sphere. Weight
constraint for finetuning is a generalised form of Lasso regression where x0 = 0. We will derive
the weight restrictions to the Linear model and extend it to the complex deep learning ResNet. These
equations are tried out in Tian et al..

min
z

subject to Ax− z = b
||x− x0||2 ≤ ϵ

||z||22

min
z

subject to Ax− z = b
||y − x0||2 ≤ ϵ

x = y

||z||22

max
µ1, µ2, µ3

µ2 ≥ 0

min
x,y,z
||z||22 + µT

1 (Ax− z− b) + µT
2 (||y − x0||2 − ϵ) + µT

3 (x− y)

for epoch← 1 to N do
xk+1 = (ATA)−1AT (zk + b− uk)
zk+1 = ρ(Axk+1 − b+ uk)
uk+1 = uk +Axk+1 − zk+1 − b ▷ gradient ascent

end for
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