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Abstract

Our research tackles the important topic of data privacy
and following new rules, especially the European Union’s
General Data Protection Regulation (GDPR). We’re con-
cerned about big AI models making mistakes or remember-
ing things they shouldn’t during training, which can harm
user privacy. With GDPR’s “right to be forgotten,” it’s
crucial to completely remove any sensitive user informa-
tion. The impracticality of retraining models from scratch
for each individual data removal is due to the consider-
able time and computational resources involved. Conse-
quently, this study aims to devise an efficient unlearning
method that optimally addresses both time and memory con-
straints. Beyond GDPR compliance, these unlearning meth-
ods hold promise for removing noisy data points, mitigating
instances of hate speech, and helping solve data oriented
concern. This study introduces three innovative approaches
: i) Soft relabeling, ii) Gradient surgery, and iii ) Forget
Pruning that particularly target aspects of loss function,
optimization, and constraints within the training pipeline.
These techniques can be applied individually or in hybrid,
providing a comprehensive framework for addressing the
challenges associated with data privacy and model compli-
ance.

1. Introduction
Our research delves into the critical challenge of data pri-
vacy and compliance with emerging regulations, specifi-
cally the EU’s General Data Protection Regulation (GDPR)
as outlined in [13, 16]. Large AI models have shown
tendencies to either hallucinate or inadvertently memorize
training data [1–3, 8, 17, 19], posing a significant threat to
user privacy. In light of GDPR’s “right to be forgotten”
imperative, the necessity to eradicate any traces of sensi-
tive user information is evident. Retraining models from
scratch for each individual removal is impractical due to
the substantial time and computational resources involved.
This research centers on developing an efficient unlearning
method, both in terms of time and memory, to effectively

eliminate sensitive user data. These unlearning methods can
extend their utility to remove noisy data and mitigate hate
speech. Code is available here1

2. Problem Statement

This section formulates the problem and the metrics to de-
termine the effectiveness of the algorithm. The unlearning
U(·) is defined as to “forget” samples S ⊂ D, from the
trained model AM (D), where AM : D → Rl is the train-
ing regime maps dataset to the weights space Rl of model
M .

The prevalent idea suggests a model is considered ”un-
learnt” if its weights match the initial training, yet this no-
tion doesn’t seamlessly apply to neural networks due to
their intricate, non-convex nature. Moreover, the training
process’s stochasticity introduces variability, resulting in di-
vergent convergence points. Despite these challenges, we
leverage two widely-used proxy metrics (F-score, MIA) for
unlearning. In the ensuing discussion, we delve into each
metric and outline their limitations. Our goal remains to
scrutinize the results judiciously and select a metric that
aligns with the unique demands of the problem. For in-
stance, in the context of unlearning in the Celeb-A dataset,
we opt for F-score due to distinct forget and test distribu-
tions. Meanwhile, for CIFAR-10, where the forget set is
uniformly sampled from the train set and train/test distribu-
tions generally align, we anticipate using MIA for its com-
putational efficiency.

2.1. F-score

The notion of forgetting is measured relative to training the
model from scratch without the samples S, i.e AM (D\S).
We cannot compare exact weights due to the randomness
from the process. Therefore, to measure the forget quality,
We recall the definition of unlearning metric, which draws
inspiration from Differential privacy(DP). For a reference,
we refer the reader to neurips machine unlearning competi-
tion [18]. The forget quality of unlearning U(·) is said to be

1https://github.com/sachit3022/unlearning
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Figure 1. [18] Evaluation metric for unlearning. Any distribution
either weights or output space of a sample quantifying unlearning
algorithm and training from scratch.

(ϵ, δ) if

Pr[AM (D\S) ∈ Rl] ≤ eϵPr[U(AM (D), S,D) ∈ Rl]+δ
(1)

This metric is employed to assess the distribution of
weights between training from scratch and the unlearning
process. As the weights form a distribution rather than a
unique point, owing to randomness in the initial seed of
weights and the order of training samples. As the weight
space is very high dimensional (11M for ResNet-18) the
output space can be considered as a suitable proxy (d <<
l). The metric’s computation involves processing each sam-
ple from S through K different seeds of the model, gen-
erating output distributions for both the unlearned method
and training from scratch. The distance between these dis-
tributions using measures like KL-divergence, Bayesian de-
cision boundaries, or any Model Inference Attack (MIA)
forms the metric. The cumulative distance for all samples
in the forget set S contributes to the forget quality, which is
expressed as F =

∑
S f(ϵ).

. Equation 1 can be further modified [11] as

ϵ = sup
i∈ MIA

[max(log(1− δ − FPR[i])− log(FNR[i]),

log(1− δ − FNR[i])− log(FPR[i]))]
(2)

One noteworthy aspect to consider is the trade-off be-
tween utility, as represented by retain-set accuracy, and
forget-quality. While it’s possible to completely ’forget’ by
initializing the model, such a model would offer no util-
ity. On the other hand, an existing model containing in-
formation about the forgotten samples might compromise
privacy. Therefore, the task for unlearning methods, as
previously explored in the literature, is to find the bal-
ance between accuracy and privacy. To account for util-
ity, accuracy can be incorporated into the metric. Finally,
F = g(Acc(R),Acc(T )) ×

∑
S f(ϵ), with R and T repre-

senting the retain and test sets.

2.2. MIA score

In contrast to F-score, MIA is advantageous as an alterna-
tive metric since it doesn’t require training multiple mod-

els. Another drawback of F-score is the need to compute
around 512 models for both training from scratch and under
the unlearning paradigm. The paradox here lies in perform-
ing unlearning to circumvent training from scratch, yet the
method itself relies on training from scratch, rendering it
unsuitable for production settings where computational ef-
ficiency is crucial.

The concept of the MIA score closely resembles that of
the F-score, but with a distinction in the distributions being
compared—they are a function of the logits of the test set
and forget set. This function is versatile and can take vari-
ous forms aimed at maximally separating these two distri-
butions. Examples of such functions encompass the logit of
the correct class, cross entropy, and loss. To achieve this, a
classifier is trained to distinguish between the train and test
samples, and the accuracy of the MIA classifier in predict-
ing forget samples as the test set is evaluated. This process
establishes that forget set is similar to the test set.

In datasets with notable variations in factors like illumi-
nation and lighting between train and test inputs, the result-
ing larger separability leads to higher MIA scores. How-
ever, it’s important to emphasize that a higher MIA score
doesn’t automatically indicate superior unlearning. To ac-
count for these differences and maintain a consistent com-
parison, we introduce a metric based on the absolute differ-
ence of MIA concerning the model trained from scratch.

Despite this refinement, a significant limitation persists
when the input train and test distributions differ. This dis-
crepancy is expected to result in distinct test and forget dis-
tributions, challenging the assumption that the logit distri-
butions of forget and test should align.

3. Methods

We present three innovative approaches for unlearning in
neural networks. The first, Soft-Relabeling, involves as-
signing labels to the forget-set based on their distance to
samples in the retain-set. The second, Gradient Surgery,
accelerates fine-tuning by projecting gradients into the null
space of the forget-set. Lastly, Activation Pruning selec-
tively removes activations that significantly contribute to the
forget-set but not to the retain-set. These approaches are
systematically compared to established methods discussed
in Section 6 to assess their effectiveness in addressing the
challenges associated with unlearning.

3.1. Soft-Relabeling

This insight stems from our observation of a model trained
in the absence of a specific class. Remarkably, when en-
countering previously unseen class data, the model does
not exhibit maximum uncertainty, treating all classes as
equiprobable. Rather, it makes confident errors. Subse-
quent examination reveals that these misclassifications are
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Figure 2. Soft-Relabeling: Task is to forget in 3 class
classification, we replace the label of with similarity weighted

combination from the retain data points ( , )

often linked to the closest classes, exhibiting shared proper-
ties. For instance, the model may mistakenly classify planes
as ships or birds due to the common blue regions in sky and
water. Such erroneous judgments appear to arise from the
model’s reliance on spurious correlations. Based on these
insights, we hypothesize that we can unlearn a class, the
label of the forget samples is obtained from the masked at-
tention of the retained samples in a batch.

3.2. Gradient Surgery

The process of unlearning may be conceptualized as the in-
tentional removal of particular segments within the model’s
memory that are entangled with the forget set. Subse-
quently, there is an attempt to implicitly acquire and inte-
grate this knowledge through the retain set. We begin by
pondering: How can we focus exclusively on the elements
of a model connected to the forget set without affecting
those acquired through the retain set? From a mathemati-
cal point of view, one way to erase model’s memory is to
perform gradient ascend. In this context, we can hypothe-
size that gradient’s direction is equivalent to writing to the
different segments in the model’s memory. Following this,
we can use the idea of gradient surgery to tackle this prob-
lem. Defining F as the forget set and R as the retain set,
this process is analogous to implementing a Gram-Schmidt
procedure on the gradients obtained from each set. We can
use stochastic gradients to alleviate the computational cost
of calculating the gradients. This procedure can be written
as follows :

∇LR⊥ = ∇LF − ∇LT
F∇LR

∇LT
R∇LR

∇LR (3)

Here ∇LF and ∇LR correspond to the gradient of forget
and retain set respectively. ∇LR⊥ is the component of gra-
dient of the forget set which is orthogonal to the retain set.
Following this, in the descent phase, we use a rather large
initial learning rate and restrict the operation exclusively to

Figure 3. A brief overview of activation pruning. Given A, the
output of an activation function on forget images, we compute a
pruning mask that zeros out any activation higher than the qth per-
centile of the batch-wise average of A. The masks are not further
recomputed for retain images.

the retain set. This choice is motivated by the objective of
circumventing the basin where the model previously con-
verged, aiming for a more generic solution in the new loss
landscape. Moreover, the intention is to confine this training
process which can resemble a soft pruning approach. This
restriction ensures that only a specific portion of the model
undergoes training. To achieve this, we introduce elastic-net
regularization, which incorporates both ℓ1norm and ℓ2norm
as penalty terms.

3.3. Activation Pruning

One of the motivations behind the development of unlearn-
ing techniques is that retraining a model from scratch on the
retain set R is prohibitively expensive in numerous scenar-
ios. The previous two approaches, detailed in Sec. 3.1 and
Sec. 3.2, still involve performing gradient computations on
the forget set F . A question that may naturally arise: can
we develop an unlearning algorithm that exploits the infor-
mation in F without any backward gradient computations?

Activation pruning is motivated by the above question.
Let An = rn(Zn) be an intermediate activation map,
where rn(.) denotes an arbitrary activation function inside
the model (such as ReLU). The pruning algorithm works
in two stages: (i) First, we make a forward pass through
the model with a batch of forget data, F , thus getting ac-
cess to the set of intermediate activations {An}. (ii) Sec-
ond, based on a pre-determined threshold q, we prune (set
to zero) any activation values above the qth percentile. The
idea is that, if the tensor An has high values in certain el-
ements, those elements are propagating important informa-
tion about the forget set through the model. Fig. 3 shows
a visual overview of this process. If we zero out or prune
some of the high-valued elements in An, then naturally the
model performance on the forget set would drop—and so
would its performance on the retain set R, as the activation
map elements important to F can also be important to R.

Despite the initial performance drop on retain, further
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fine-tuning solely on the retain set can reinforce new path-
ways for the retain data; it will encourage retain images
to forge new connections through the model which will
be different from that of the forget set. In practice, this
can be implemented by creating a wrapper on the activa-
tion functions, that first computes the average activation
A ∈ RC×H×W corresponding to a forget batch, and then
computes the bool mask based on q. We set q to very high
values for the activation functions in the early layers of the
model (for instance, q = 0.99), while setting it to lower
values, like q = 0.90, for deeper layers. This fuelled by the
rationale that shallower layers in convolutional models learn
more generic and low-level features, while deeper layers
learn high-level (and thus sample-specific features). Fur-
ther, if we prune too many activations in the early stages of
the model, we are destroying information too early, which
will cause serious detriments in model performance.

4. Experimental setup

We want to study the effectiveness of the unlearning algo-
rithm under 2 settings. The selection of the two datasets
aims to explore the diverse capacity of unlearning. In
CelebA, the forget set and test set exhibit distinct distribu-
tions, while CIFAR represents a scenario with a uniform
distribution. Notably, the initial model in CelebA tends to
be overly fitted due to the substantial gap between train and
test sets (11%). Furthermore, the forget set in CelebA fea-
tures a different distribution compared to both the retain set
and test set. In contrast, the initial model in CIFAR is better
generalized, with a smaller performance gap (2%), and the
forget set shares the same distribution as the retain set and
test set.

For a fair evaluation of the unlearning paradigm, we re-
frain from tuning hyperparameters for both datasets. Con-
sistently, we apply the same paradigm to assess how each
approach performs across various levels of unlearning.

4.1. Celeb-A: Train-Forget-Test are sampled non-
uniformly

The dataset consists of natural images featuring individu-
als’ faces (Xi), along with associated identity (Ii) and at-
tribute (ai) information. The attributes are a combination
of three identity-related binary attributes. We represent this
dataset as D = (Xi, ai) ∀ i, as detailed in [18]. The
’forget set,’ denoted as S, is meticulously curated to en-
compass 2% of the training dataset’s identities. Crucially,
these identities are chosen in a non-I.I.D manner from the
training data, wherein only 2 classes out of 8 are selected,
as per the methodology outlined in [18].

4.2. CIFAR-10: Train-Forget-Test are sampled uni-
formly

For the CIFAR-10 dataset, we forget 5000 samples, sampled
uniformly out of the 50000 samples present in the train-
ing set. The examples to forget are obtained from the CI-
FAR example provided in the starter code of the Unlearning
Challenge [18].

4.3. Model

Our training procedure adheres to the AM (D) framework,
where M corresponds to a ResNet-18 model. This model is
trained for 30 epochs, with the inclusion of class weights to
address class imbalance effectively.

While ResNet-18 serves as an excellent initial frame-
work, we anticipate that the unlearning methods applied
to ResNet-18 will generalize to other model architectures.
To account for diverse levels of memorization in different
architectures and varying model capacities, we extend our
evaluation to include ResNet-50 and Vision Transformers
[6]. Detailed results are presented in Section 5.

4.4. Hyper parameters of metrics

Our objective is to selectively ’forget’ samples from S. To
evaluate the effectiveness of this ’forgetting’ process, we
utilize the F metric with K = 32 random seeds, as out-
lined in Section 2. In this evaluation, cross-entropy is em-
ployed as a function, and a max-separable Bayesian classi-
fier serves as a discriminator to estimate the F-score. For
MIA, we employ four different functions, namely correct-
ness, confidence, entropy, and probability.

5. Results
.

Attacks correctness confidence entropy prob best attack MIA ↓
Retrain 20.92 52.06 40.68 52.14 0.00

Finetune [7] 14.12(6.8 ) 53.91 (1.85 ) 45.07 (4.39 ) 56.73 (4.59 ) 4.41
Random Labels 10.68 (10.24 ) 54.79 (2.73 ) 48.39 (7.71 ) 57.39 (5.25 ) 6.48
SCRUBS [12] 17.04 (3.88 ) 62.57 10.51 54.96 (14.28 ) 58.72 (6.58 ) 8.81

Boundary Unlearning [5] 15.680 (5.24 ) 53.65 (0.26 ) 44.56 (12.17 ) 59.00 (2.27 ) 4.98

Soft-Relabeling 13.88 (3.2 ) 42.97 (10.94) 38.96 (1.72) 53.13 (0.99) 4.21
Gradient Surgery 21.68 (0.76 ) 55.56 (3.5) 38.30 (2.38) 52.31 (0.17) (1.70)
Forget Pruning 50.62 (29.7 ) 49.90 (2.16 ) 51.74 (11.06 ) 49.40 (2.74 ) 11.41
No Unlearning 9.96 (10.96 ) 54.78 (0.89 ) 50.61 (9.93 ) 60.89 (8.75 ) 7.63

Table 1. MIA scores for CIFAR10 dataset, (·) indicates the gap to
the retrained from scratch. lower the better.

From Tab. 2 we can observe that all our methods show
competitive results compared to existing approaches. We
analyze the results from the perspective of each approach:
Soft-Relabeling: Soft-Relabeling demonstrates consistent
reliability across various levels of unlearning, as indicated
by the MIA scores for both CIFAR-10 and Celeb-A in Ta-
bles 1 and 3. In contrast, some other approaches excel in
specific settings but show a decline in performance in other
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Metric RA ↑ TA ↑ UA ↓ F-score↑ total score ↑
Retrain 87.34 81.94 77.96 1 1

Finetune [7] 88.71 82.50 85.36 0.524 0.488
Random Labels 89.31 82.66 89.40 0.595 0.605
SCRUBS [12] 82.26 82.63 83.33 0.488 0.480

Boundary Unlearning [5] 86.31 82.75 83.18 0.504 0.502

Soft-Relabeling 87.91 82.18 84.72 0.521 0.525
Gradient Surgery 84.06 81.49 82.71 0.637 0.604
Forget Pruning 82.73 81.25 82.85 0.640 0.547
No Unlearning 89.22 83.38 89.39 - -

Table 2. Forget Metrics for CIFAR10 dataset

Attacks correctness confidence entropy prob best attack MIA ↓
Retrain 7.15 12.31 12.39 67.09 0.00

Finetune [7] 6.8 (0.35) 11.2 (1.11) 12.17 (0.22) 66.64 (0.45) 0.53
Random Labels 7.6 (0.45) 11.73 (0.38) 10.72 (1.67) 67.36 (0.27) 0.66
SCRUBS [12] 6.6 (0.55) 10.5(1.81) 10.18 (2.21) 66.45 (0.64) 1.30

Boundary Unlearning [5] 7.22 (0.07) 12.36 (0.05) 12.59 (0.2) 68.62 (0.46) (0.195 )

Soft-Relabeling 7.12 (0.03) 11.89 (0.69) 11.68 (0.49) 67.39 (0.3) 0.37
Gradient Surgery 6.7 (0.45) 11.80 (0.51) 11.39 (1) 66.80 (0.29) 0.56
Forget Pruning 37.64 (30.49) 25.42 (13.11) 42.26 (29.87) 75.81 (8.72) 20.55
No Unlearning 6.3 (0.85) 11.59 (0.7) 12.23 (0.72) 67.65 (0.56) 0.70

Table 3. MIA scores for CelebA dataset. (·) indicates the gap to
the retrained from scratch. lower the better.

Metric RA ↑ TA ↑ UA ↓ F-score↑ total score ↑
Retrain 99.99 86.33 90.20 1 1

Finetune [7] 99.99 86.35 90.33 0.058 0.058
Random Labels 99.99 86.35 85.41 0.093 0.093
SCRUBS [12] 90.74 86.16 90.62 0.012 0.011

Boundary Unlearning [5] 87.00 85.69 90.78 0.004 0.003

Soft-Relabeling 89.23 82.83 88.87 0.110 0.104
Gradient Surgery 87.40 86.44 91.01 0.008 0.009
Forget Pruning 99.99 86.36 90.31 0.488 0.406
No Unlearning 99.15 86.48 98.92 - -

Table 4. Forget Metrics for CelebA dataset

scenarios. The forget metric score in Table 2 aligns with
the MIA scores and competes well with existing solutions.
While Soft-Relabeling may not be the best in terms of util-
ity for CIFAR-10, with only a 1.31% deviation from the true
utility of retraining from scratch, it is within the 1 − 2%
range of the best method.

Soft-Relabeling performs well on the CelebA dataset,
particularly when the model is overly fitted. The method ef-
fectively erases the decision boundary of overfitted samples,
emulating the behavior of retraining from scratch. However,
occasional drops in performance may occur due to stochas-
tic updates. Increasing the batch size of the retain set leads
to a broader exploration of the space, resulting in superior
performance on the F score.
Gradient Surgery: Gradient Surgery performs well in
terms of both MIA scores and forget metrics for CIFAR,
as observed in Tab. 1 and Tab. 2. It achieves the best for-
get metric score among our proposed methods. This suc-
cess can be attributed to the uniformity of the forget-set and
retain-set. By disallowing gradients in the direction of the

forget set, the model accelerates the fine-tuning approach.
It can be demonstrated that the slight modification of per-
forming one iteration of gradient ascent on the forget set
helps prevent the model from converging into saddle points
( a possibility for finetuning ) ensuring the model reaches
the global minima. In the case of CelebA, the forget met-
ric score, as shown in Tab. 4, is lower compared to that of
Soft-Relabeling but higher than other existing approaches.
The utility is on the lower end compared to other existing
method.

Activation Pruning: In the case of CIFAR, activation prun-
ing seems to have a problem with membership inference at-
tack and the forget metrics for CIFAR, as observed in Tab. 1;
this effect is less pronounced for CelebA, but still present to
some extent, as seen in Tab. 3. For CIFAR, the forget metric
score is comparable to existing methods; it is higher than
Soft-Relabeling but less than that of Gradient Surgery, as
seen from Tab. 2. However, for CelebA, in Tab. 4, the for-
get metric score is significantly higher than approaches. We
believe the strange difference between CIFAR and CelebA
can be explained by the fact that the base model we used
for unlearning on CelebA was a very confident, overfitted
model with a retrain accuracy of almost 1. But the model
for CIFAR was less accurate; this suggests pruning works
better for models which are fitted strongly on train, but has
problems with underfitted models; perhaps a less aggressive
pruning would work for CIFAR. When the initial model has
high amount of overfitting, Activation Pruning outperforms
any other method of a huge margin. The model also pre-
serves the utility of the model in the CelebA dataset.

Discussion on Metrics: Activation pruning exhibits a no-
table disparity in ∆ MIA and F-score metrics for the Celeb-
A dataset. According to ∆ MIA score, Activation Pruning
performs poorly, while in terms of F-score, it outperforms
every method by a significant margin. Given the substan-
tial difference between the test and forget distributions in
Celeb-A, the MIA metric proves less reliable, as the ini-
tial distribution differs, and the expectation of the logit dis-
tribution similarity between the forget set and test set is
not met. In contrast, F-score demonstrates greater robust-
ness to such assumptions, making it the preferred metric for
datasets with distinct distributions, like Celeb-A.

For CIFAR-10 datasets, achieving a robust estimate of
F-score demands a higher number of models to be trained.
Unfortunately, due to limited computational resources, we
had to settle for 32 models, which may not provide the most
reliable estimate. In these circumstances, MIA proves to be
a more dependable metric. In the case of the CIFAR-10
dataset, where the test and forget distributions are uniform,
and the retain distribution differs from forget and test, as
illustrated in Fig. 4, MIA emerges as a reliable metric.
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6. Related Work
Unlearning is an emerging field marked by a lack of stan-
dardized definitions and evaluation criteria. This evolving
landscape has given rise to diverse perspectives, resulting
in multiple definitions and assessment measures. Notably,
certain evaluation metrics center around the concept that ef-
fective unlearning algorithms should align the logit distribu-
tions of samples from the ’forget set’ (S) with those of a test
dataset. This perspective leads to the direct optimization of
GAN loss between the test and forget sets, as proposed by
[4]. Alternatively, other approaches, such as [15], leverage
a challenge inherent in deep learning, catastrophic forget-
ting, to their advantage. Additionally, [7] demonstrates that
fine-tuning on the retained set (D \ S) leads to effective
unlearning. Some works, including [12], address the more
stringent case of unlearning, class unlearning, by maximiz-
ing KL-divergence on the forget set labels. Furthermore,
works like [21] and [9] employ Fisher’s discriminant, origi-
nally designed for unlearning in classical machine learning,
though challenges arise when adapting it to large models
due to its O(W 2) time complexity.

However, the aforementioned approaches exhibit insta-
bility in optimization, lack theoretical guarantees or the
ability to balance accuracy and privacy, as mentioned in
Section 2. These methods do not provide clear explanations
for the emergence of unlearning properties. Specifically, the
GAN approach may falter when faced with a non-I.I.D for-
get set, while the KL-divergence approach may prove less
effective for an I.I.D forget set. Our problem statement,
which involves forgetting specific identities within a dataset
characterized by class imbalance, does not neatly fit into ei-
ther the strong I.I.D or non-I.I.D category.

For a more comprehensive understanding of the evolv-
ing field of unlearning, we recommend that interested read-
ers refer to recent survey papers on the topic [10, 14, 20]
available at 2.

7. Conclusion
In this study, we approach the machine unlearning prob-
lem from three different perspectives. We restrict ourselves
to just Computer Vision, specifically image classification,
though the problem can be considered a general paradigm
applicable over most sub-fields in machine learning. We
found that all three approaches we proposed perform com-
petitively with existing methods in the field, and are promis-
ing directions of future study.
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8. Appendix

To fully understand the results and fully understand the rel-
ative performace, we plot the results.

(a) Loss distribution of forget-test before unlearning

(b) Loss distribution of forget-test after unlearning

Figure 4. Effect of unlearning Algorithm, showing the test and for-
get distributions are similar compared to the not apply unlearning.
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(a) blue indicates the retain-accuracy, green indicates
the test accuracy and red indicates the forget accuracy.
blue and green should be as high as possible indicating
better utility and red should be equal to the green bar
indicating similarity of forget and test.

(b) The MIA score difference of the un-
learning method compared to retraining from
scratch is a metric where a lower value indi-
cates better performance.

(c) The F-score of all the described methods
in the metrics indicates that a higher value
is preferable, signifying better performance
in unlearning.

Figure 5. Metrics for measuring Unlearning, and comparing
across different approaches for CIFAR-10 datasset

(a) blue indicates the retain-accuracy, green indicates
the test accuracy and red indicates the forget accuracy.
blue and green should be as high as possible indicating
better utility and red should be equal to the green bar
indicating similarity of forget and test.

(b) The MIA score difference of the un-
learning method compared to retraining from
scratch is a metric where a lower value indi-
cates better performance.

(c) The F-score of all the described methods
in the metrics indicates that a higher value is
preferable, signifying better performance in
unlearning.

Figure 6. Metrics for measuring Unlearning, and comparing
across different approaches for CelebA dataset
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